1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
|
/*
* arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c
* This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
* DDR2 controller, specifically the 440EPx/GRx.
*
* (C) Copyright 2007-2008
* Larry Johnson, lrj@acm.org.
*
* Based primarily on arch/powerpc/cpu/ppc4xx/4xx_spd_ddr2.c, which is...
*
* (C) Copyright 2007
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* COPYRIGHT AMCC CORPORATION 2004
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <command.h>
#include <asm/ppc4xx.h>
#include <i2c.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/cache.h>
#if defined(CONFIG_SPD_EEPROM) && \
(defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
/*-----------------------------------------------------------------------------+
* Defines
*-----------------------------------------------------------------------------*/
#define MAXDIMMS 2
#define MAXRANKS 2
#define ONE_BILLION 1000000000
#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
#define DLL_DQS_DELAY 0x19
#define DLL_DQS_BYPASS 0x0B
#define DQS_OUT_SHIFT 0x7F
/*
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
* region. Right now the cache should still be disabled in U-Boot because of the
* EMAC driver, that need it's buffer descriptor to be located in non cached
* memory.
*
* If at some time this restriction doesn't apply anymore, just define
* CONFIG_4xx_DCACHE in the board config file and this code should setup
* everything correctly.
*/
#if defined(CONFIG_4xx_DCACHE)
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
#else
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
#endif
/*-----------------------------------------------------------------------------+
* Prototypes
*-----------------------------------------------------------------------------*/
extern int denali_wait_for_dlllock(void);
extern void denali_core_search_data_eye(void);
extern void dcbz_area(u32 start_address, u32 num_bytes);
/*
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
*/
void __spd_ddr_init_hang(void)
{
hang();
}
void spd_ddr_init_hang(void)
__attribute__ ((weak, alias("__spd_ddr_init_hang")));
#if defined(DEBUG)
static void print_mcsr(void)
{
printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
}
static void denali_sdram_register_dump(void)
{
unsigned int sdram_data;
printf("\n Register Dump:\n");
mfsdram(DDR0_00, sdram_data);
printf(" DDR0_00 = 0x%08X", sdram_data);
mfsdram(DDR0_01, sdram_data);
printf(" DDR0_01 = 0x%08X\n", sdram_data);
mfsdram(DDR0_02, sdram_data);
printf(" DDR0_02 = 0x%08X", sdram_data);
mfsdram(DDR0_03, sdram_data);
printf(" DDR0_03 = 0x%08X\n", sdram_data);
mfsdram(DDR0_04, sdram_data);
printf(" DDR0_04 = 0x%08X", sdram_data);
mfsdram(DDR0_05, sdram_data);
printf(" DDR0_05 = 0x%08X\n", sdram_data);
mfsdram(DDR0_06, sdram_data);
printf(" DDR0_06 = 0x%08X", sdram_data);
mfsdram(DDR0_07, sdram_data);
printf(" DDR0_07 = 0x%08X\n", sdram_data);
mfsdram(DDR0_08, sdram_data);
printf(" DDR0_08 = 0x%08X", sdram_data);
mfsdram(DDR0_09, sdram_data);
printf(" DDR0_09 = 0x%08X\n", sdram_data);
mfsdram(DDR0_10, sdram_data);
printf(" DDR0_10 = 0x%08X", sdram_data);
mfsdram(DDR0_11, sdram_data);
printf(" DDR0_11 = 0x%08X\n", sdram_data);
mfsdram(DDR0_12, sdram_data);
printf(" DDR0_12 = 0x%08X", sdram_data);
mfsdram(DDR0_14, sdram_data);
printf(" DDR0_14 = 0x%08X\n", sdram_data);
mfsdram(DDR0_17, sdram_data);
printf(" DDR0_17 = 0x%08X", sdram_data);
mfsdram(DDR0_18, sdram_data);
printf(" DDR0_18 = 0x%08X\n", sdram_data);
mfsdram(DDR0_19, sdram_data);
printf(" DDR0_19 = 0x%08X", sdram_data);
mfsdram(DDR0_20, sdram_data);
printf(" DDR0_20 = 0x%08X\n", sdram_data);
mfsdram(DDR0_21, sdram_data);
printf(" DDR0_21 = 0x%08X", sdram_data);
mfsdram(DDR0_22, sdram_data);
printf(" DDR0_22 = 0x%08X\n", sdram_data);
mfsdram(DDR0_23, sdram_data);
printf(" DDR0_23 = 0x%08X", sdram_data);
mfsdram(DDR0_24, sdram_data);
printf(" DDR0_24 = 0x%08X\n", sdram_data);
mfsdram(DDR0_25, sdram_data);
printf(" DDR0_25 = 0x%08X", sdram_data);
mfsdram(DDR0_26, sdram_data);
printf(" DDR0_26 = 0x%08X\n", sdram_data);
mfsdram(DDR0_27, sdram_data);
printf(" DDR0_27 = 0x%08X", sdram_data);
mfsdram(DDR0_28, sdram_data);
printf(" DDR0_28 = 0x%08X\n", sdram_data);
mfsdram(DDR0_31, sdram_data);
printf(" DDR0_31 = 0x%08X", sdram_data);
mfsdram(DDR0_32, sdram_data);
printf(" DDR0_32 = 0x%08X\n", sdram_data);
mfsdram(DDR0_33, sdram_data);
printf(" DDR0_33 = 0x%08X", sdram_data);
mfsdram(DDR0_34, sdram_data);
printf(" DDR0_34 = 0x%08X\n", sdram_data);
mfsdram(DDR0_35, sdram_data);
printf(" DDR0_35 = 0x%08X", sdram_data);
mfsdram(DDR0_36, sdram_data);
printf(" DDR0_36 = 0x%08X\n", sdram_data);
mfsdram(DDR0_37, sdram_data);
printf(" DDR0_37 = 0x%08X", sdram_data);
mfsdram(DDR0_38, sdram_data);
printf(" DDR0_38 = 0x%08X\n", sdram_data);
mfsdram(DDR0_39, sdram_data);
printf(" DDR0_39 = 0x%08X", sdram_data);
mfsdram(DDR0_40, sdram_data);
printf(" DDR0_40 = 0x%08X\n", sdram_data);
mfsdram(DDR0_41, sdram_data);
printf(" DDR0_41 = 0x%08X", sdram_data);
mfsdram(DDR0_42, sdram_data);
printf(" DDR0_42 = 0x%08X\n", sdram_data);
mfsdram(DDR0_43, sdram_data);
printf(" DDR0_43 = 0x%08X", sdram_data);
mfsdram(DDR0_44, sdram_data);
printf(" DDR0_44 = 0x%08X\n", sdram_data);
}
#else
static inline void denali_sdram_register_dump(void)
{
}
inline static void print_mcsr(void)
{
}
#endif /* defined(DEBUG) */
static int is_ecc_enabled(void)
{
u32 val;
mfsdram(DDR0_22, val);
return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
}
static unsigned char spd_read(u8 chip, unsigned int addr)
{
u8 data[2];
if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
return 0;
}
debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
chip, addr, data[0]);
return data[0];
}
static unsigned long get_tcyc(unsigned char reg)
{
/*
* Byte 9, et al: Cycle time for CAS Latency=X, is split into two
* nibbles: the higher order nibble (bits 4-7) designates the cycle time
* to a granularity of 1ns; the value presented by the lower order
* nibble (bits 0-3) has a granularity of .1ns and is added to the value
* designated by the higher nibble. In addition, four lines of the lower
* order nibble are assigned to support +.25, +.33, +.66, and +.75.
*/
unsigned char subfield_b = reg & 0x0F;
switch (subfield_b & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
return 1000 * (reg >> 4) + 100 * subfield_b;
case 0xA:
return 1000 * (reg >> 4) + 250;
case 0xB:
return 1000 * (reg >> 4) + 333;
case 0xC:
return 1000 * (reg >> 4) + 667;
case 0xD:
return 1000 * (reg >> 4) + 750;
}
return 0;
}
/*------------------------------------------------------------------
* Find the installed DIMMs, make sure that the are DDR2, and fill
* in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the
* DIMM and dimm_num is present.
* Note: Because there are only two chip-select lines, it is assumed
* that a board with a single socket can support two ranks on that
* socket, while a board with two sockets can support only one rank
* on each socket.
*-----------------------------------------------------------------*/
static void get_spd_info(unsigned long dimm_ranks[],
unsigned long *ranks,
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_found = false;
unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
unsigned char num_of_bytes;
unsigned char total_size;
*ranks = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
num_of_bytes = 0;
total_size = 0;
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
if ((num_of_bytes != 0) && (total_size != 0)) {
unsigned char const dimm_type =
spd_read(iic0_dimm_addr[dimm_num], 2);
unsigned long ranks_on_dimm =
(spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
if (8 != dimm_type) {
switch (dimm_type) {
case 1:
printf("ERROR: Standard Fast Page Mode "
"DRAM DIMM");
break;
case 2:
printf("ERROR: EDO DIMM");
break;
case 3:
printf("ERROR: Pipelined Nibble DIMM");
break;
case 4:
printf("ERROR: SDRAM DIMM");
break;
case 5:
printf("ERROR: Multiplexed ROM DIMM");
break;
case 6:
printf("ERROR: SGRAM DIMM");
break;
case 7:
printf("ERROR: DDR1 DIMM");
break;
default:
printf("ERROR: Unknown DIMM (type %d)",
(unsigned int)dimm_type);
break;
}
printf(" detected in slot %lu.\n", dimm_num);
printf("Only DDR2 SDRAM DIMMs are supported."
"\n");
printf("Replace the module with a DDR2 DIMM."
"\n\n");
spd_ddr_init_hang();
}
dimm_found = true;
debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
"\n", dimm_num, ranks_on_dimm);
if (ranks_on_dimm > max_ranks_per_dimm) {
printf("WARNING: DRAM DIMM in slot %lu has %lu "
"ranks.\n", dimm_num, ranks_on_dimm);
if (1 == max_ranks_per_dimm) {
printf("Only one rank will be used.\n");
} else {
printf
("Only two ranks will be used.\n");
}
ranks_on_dimm = max_ranks_per_dimm;
}
dimm_ranks[dimm_num] = ranks_on_dimm;
*ranks += ranks_on_dimm;
} else {
dimm_ranks[dimm_num] = 0;
debug("DIMM slot %lu: Not populated\n", dimm_num);
}
}
if (dimm_found == false) {
printf("ERROR: No memory installed.\n");
printf("Install at least one DDR2 DIMM.\n\n");
spd_ddr_init_hang();
}
debug("Total number of ranks = %ld\n", *ranks);
}
/*------------------------------------------------------------------
* For the memory DIMMs installed, this routine verifies that
* frequency previously calculated is supported.
*-----------------------------------------------------------------*/
static void check_frequency(unsigned long *dimm_ranks,
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long cycle_time;
unsigned long calc_cycle_time;
/*
* calc_cycle_time is calculated from DDR frequency set by board/chip
* and is expressed in picoseconds to match the way DIMM cycle time is
* calculated below.
*/
calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_ranks[dimm_num]) {
cycle_time =
get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
debug("cycle_time=%ld ps\n", cycle_time);
if (cycle_time > (calc_cycle_time + 10)) {
/*
* the provided sdram cycle_time is too small
* for the available DIMM cycle_time. The
* additionnal 10ps is here to accept a small
* incertainty.
*/
printf
("ERROR: DRAM DIMM detected with cycle_time %d ps in "
"slot %d \n while calculated cycle time is %d ps.\n",
(unsigned int)cycle_time,
(unsigned int)dimm_num,
(unsigned int)calc_cycle_time);
printf
("Replace the DIMM, or change DDR frequency via "
"strapping bits.\n\n");
spd_ddr_init_hang();
}
}
}
}
/*------------------------------------------------------------------
* This routine gets size information for the installed memory
* DIMMs.
*-----------------------------------------------------------------*/
static void get_dimm_size(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long *const rows,
unsigned long *const banks,
unsigned long *const cols, unsigned long *const width)
{
unsigned long dimm_num;
*rows = 0;
*banks = 0;
*cols = 0;
*width = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_ranks[dimm_num]) {
unsigned long t;
/* Rows */
t = spd_read(iic0_dimm_addr[dimm_num], 3);
if (0 == *rows) {
*rows = t;
} else if (t != *rows) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same number of rows.\n\n");
spd_ddr_init_hang();
}
/* Banks */
t = spd_read(iic0_dimm_addr[dimm_num], 17);
if (0 == *banks) {
*banks = t;
} else if (t != *banks) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same number of banks.\n\n");
spd_ddr_init_hang();
}
/* Columns */
t = spd_read(iic0_dimm_addr[dimm_num], 4);
if (0 == *cols) {
*cols = t;
} else if (t != *cols) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same number of columns.\n\n");
spd_ddr_init_hang();
}
/* Data width */
t = spd_read(iic0_dimm_addr[dimm_num], 6);
if (0 == *width) {
*width = t;
} else if (t != *width) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same data width.\n\n");
spd_ddr_init_hang();
}
}
}
debug("Number of rows = %ld\n", *rows);
debug("Number of columns = %ld\n", *cols);
debug("Number of banks = %ld\n", *banks);
debug("Data width = %ld\n", *width);
if (*rows > 14) {
printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
*rows);
printf("Only modules with 14 or fewer rows are supported.\n\n");
spd_ddr_init_hang();
}
if (4 != *banks && 8 != *banks) {
printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
printf("Only modules with 4 or 8 banks are supported.\n\n");
spd_ddr_init_hang();
}
if (*cols > 12) {
printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
*cols);
printf("Only modules with 12 or fewer columns are "
"supported.\n\n");
spd_ddr_init_hang();
}
if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
*width);
printf("Only modules with widths of 32, 40, 64, and 72 bits "
"are supported.\n\n");
spd_ddr_init_hang();
}
}
/*------------------------------------------------------------------
* Only 1.8V modules are supported. This routine verifies this.
*-----------------------------------------------------------------*/
static void check_voltage_type(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long voltage_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_ranks[dimm_num]) {
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
if (0x05 != voltage_type) { /* 1.8V for DDR2 */
printf("ERROR: Slot %lu provides 1.8V for DDR2 "
"DIMMs.\n", dimm_num);
switch (voltage_type) {
case 0x00:
printf("This DIMM is 5.0 Volt/TTL.\n");
break;
case 0x01:
printf("This DIMM is LVTTL.\n");
break;
case 0x02:
printf("This DIMM is 1.5 Volt.\n");
break;
case 0x03:
printf("This DIMM is 3.3 Volt/TTL.\n");
break;
case 0x04:
printf("This DIMM is 2.5 Volt.\n");
break;
default:
printf("This DIMM is an unknown "
"voltage.\n");
break;
}
printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
spd_ddr_init_hang();
}
}
}
}
static void program_ddr0_03(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq,
unsigned long rows, unsigned long *cas_latency)
{
unsigned long dimm_num;
unsigned long cas_index;
unsigned long cycle_2_0_clk;
unsigned long cycle_3_0_clk;
unsigned long cycle_4_0_clk;
unsigned long cycle_5_0_clk;
unsigned long max_2_0_tcyc_ps = 100;
unsigned long max_3_0_tcyc_ps = 100;
unsigned long max_4_0_tcyc_ps = 100;
unsigned long max_5_0_tcyc_ps = 100;
unsigned char cas_available = 0x3C; /* value for DDR2 */
u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
unsigned int const tcyc_addr[3] = { 9, 23, 25 };
/*------------------------------------------------------------------
* Get the board configuration info.
*-----------------------------------------------------------------*/
debug("sdram_freq = %ld\n", sdram_freq);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned char const cas_bit =
spd_read(iic0_dimm_addr[dimm_num], 18);
unsigned char cas_mask;
cas_available &= cas_bit;
for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
if (cas_bit & cas_mask)
break;
}
debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
cas_bit, cas_mask);
for (cas_index = 0; cas_index < 3;
cas_mask >>= 1, cas_index++) {
unsigned long cycle_time_ps;
if (!(cas_available & cas_mask)) {
continue;
}
cycle_time_ps =
get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
tcyc_addr[cas_index]));
debug("cas_index = %ld: cycle_time_ps = %ld\n",
cas_index, cycle_time_ps);
/*
* DDR2 devices use the following bitmask for CAS latency:
* Bit 7 6 5 4 3 2 1 0
* TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
*/
switch (cas_mask) {
case 0x20:
max_5_0_tcyc_ps =
max(max_5_0_tcyc_ps, cycle_time_ps);
break;
case 0x10:
max_4_0_tcyc_ps =
max(max_4_0_tcyc_ps, cycle_time_ps);
break;
case 0x08:
max_3_0_tcyc_ps =
max(max_3_0_tcyc_ps, cycle_time_ps);
break;
case 0x04:
max_2_0_tcyc_ps =
max(max_2_0_tcyc_ps, cycle_time_ps);
break;
}
}
}
}
debug("cas_available (bit map) = 0x%02X\n", cas_available);
/*------------------------------------------------------------------
* Set the SDRAM mode, SDRAM_MMODE
*-----------------------------------------------------------------*/
/* add 10 here because of rounding problems */
cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
debug("cycle_2_0_clk = %ld\n", cycle_2_0_clk);
debug("cycle_3_0_clk = %ld\n", cycle_3_0_clk);
debug("cycle_4_0_clk = %ld\n", cycle_4_0_clk);
debug("cycle_5_0_clk = %ld\n", cycle_5_0_clk);
if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
*cas_latency = 2;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
DDR0_03_CASLAT_LIN_ENCODE(0x4);
} else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
*cas_latency = 3;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
DDR0_03_CASLAT_LIN_ENCODE(0x6);
} else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
*cas_latency = 4;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
DDR0_03_CASLAT_LIN_ENCODE(0x8);
} else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
*cas_latency = 5;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
DDR0_03_CASLAT_LIN_ENCODE(0xA);
} else {
printf("ERROR: Cannot find a supported CAS latency with the "
"installed DIMMs.\n");
printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
"and 5.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range "
"of the DIMMs.\n");
printf("sdram_freq=%ld cycle2=%ld cycle3=%ld cycle4=%ld "
"cycle5=%ld\n\n", sdram_freq, cycle_2_0_clk,
cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
spd_ddr_init_hang();
}
debug("CAS latency = %ld\n", *cas_latency);
mtsdram(DDR0_03, ddr0_03);
}
static void program_ddr0_04(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long t_rc_ps = 0;
unsigned long t_rrd_ps = 0;
unsigned long t_rtp_ps = 0;
unsigned long t_rc_clk;
unsigned long t_rrd_clk;
unsigned long t_rtp_clk;
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
/* tRC */
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
case 0x1:
ps += 250;
break;
case 0x2:
ps += 333;
break;
case 0x3:
ps += 500;
break;
case 0x4:
ps += 667;
break;
case 0x5:
ps += 750;
break;
}
t_rc_ps = max(t_rc_ps, ps);
/* tRRD */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
t_rrd_ps = max(t_rrd_ps, ps);
/* tRTP */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
t_rtp_ps = max(t_rtp_ps, ps);
}
}
debug("t_rc_ps = %ld\n", t_rc_ps);
t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
debug("t_rrd_ps = %ld\n", t_rrd_ps);
t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
debug("t_rtp_ps = %ld\n", t_rtp_ps);
t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
DDR0_04_TRRD_ENCODE(t_rrd_clk) |
DDR0_04_TRTP_ENCODE(t_rtp_clk));
}
static void program_ddr0_05(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long t_rp_ps = 0;
unsigned long t_ras_ps = 0;
unsigned long t_rp_clk;
unsigned long t_ras_clk;
u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
/* tRP */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
t_rp_ps = max(t_rp_ps, ps);
/* tRAS */
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
t_ras_ps = max(t_ras_ps, ps);
}
}
debug("t_rp_ps = %ld\n", t_rp_ps);
t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
debug("t_ras_ps = %ld\n", t_ras_ps);
t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
}
static void program_ddr0_06(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned char spd_40;
unsigned long t_wtr_ps = 0;
unsigned long t_rfc_ps = 0;
unsigned long t_wtr_clk;
unsigned long t_rfc_clk;
u32 ddr0_06 =
DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
/* tWTR */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
t_wtr_ps = max(t_wtr_ps, ps);
/* tRFC */
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
ps += 256000 * (spd_40 & 0x01);
switch ((spd_40 & 0x0E) >> 1) {
case 0x1:
ps += 250;
break;
case 0x2:
ps += 333;
break;
case 0x3:
ps += 500;
break;
case 0x4:
ps += 667;
break;
case 0x5:
ps += 750;
break;
}
t_rfc_ps = max(t_rfc_ps, ps);
}
}
debug("t_wtr_ps = %ld\n", t_wtr_ps);
t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
debug("t_rfc_ps = %ld\n", t_rfc_ps);
t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
DDR0_06_TRFC_ENCODE(t_rfc_clk));
}
static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
{
unsigned long csmap;
if (2 == ranks) {
/* Both chip selects in use */
csmap = 0x03;
} else {
/* One chip select in use */
csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
}
mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
DDR0_10_CS_MAP_ENCODE(csmap) |
DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
}
static void program_ddr0_11(unsigned long sdram_freq)
{
unsigned long const t_xsnr_ps = 200000; /* 200 ns */
unsigned long t_xsnr_clk;
debug("t_xsnr_ps = %ld\n", t_xsnr_ps);
t_xsnr_clk =
(MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
}
static void program_ddr0_22(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks, unsigned long width)
{
#if defined(CONFIG_DDR_ECC)
unsigned long dimm_num;
unsigned long ecc_available = width >= 64;
u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
/* Check for ECC */
if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
0x02)) {
ecc_available = false;
}
}
}
if (ecc_available) {
debug("ECC found on all DIMMs present\n");
mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
} else {
debug("ECC not found on some or all DIMMs present\n");
mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
}
#else
mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
#endif /* defined(CONFIG_DDR_ECC) */
}
static void program_ddr0_24(unsigned long ranks)
{
u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
if (2 == ranks) {
/* Both chip selects in use */
ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
} else {
/* One chip select in use */
/* One of the two fields added to ddr0_24 is a "don't care" */
ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
}
mtsdram(DDR0_24, ddr0_24);
}
static void program_ddr0_26(unsigned long sdram_freq)
{
unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
/* TODO: check definition of tRAS_MAX */
unsigned long const t_ras_max_ps = 9 * t_ref_ps;
unsigned long t_ras_max_clk;
unsigned long t_ref_clk;
/* Round down t_ras_max_clk and t_ref_clk */
debug("t_ras_max_ps = %ld\n", t_ras_max_ps);
t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
debug("t_ref_ps = %ld\n", t_ref_ps);
t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
DDR0_26_TREF_ENCODE(t_ref_clk));
}
static void program_ddr0_27(unsigned long sdram_freq)
{
unsigned long const t_init_ps = 200000000; /* 200 us. init */
unsigned long t_init_clk;
debug("t_init_ps = %ld\n", t_init_ps);
t_init_clk =
(MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
DDR0_27_TINIT_ENCODE(t_init_clk));
}
static void program_ddr0_43(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq,
unsigned long cols, unsigned long banks)
{
unsigned long dimm_num;
unsigned long t_wr_ps = 0;
unsigned long t_wr_clk;
u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
t_wr_ps = max(t_wr_ps, ps);
}
}
debug("t_wr_ps = %ld\n", t_wr_ps);
t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
}
static void program_ddr0_44(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long t_rcd_ps = 0;
unsigned long t_rcd_clk;
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
t_rcd_ps = max(t_rcd_ps, ps);
}
}
debug("t_rcd_ps = %ld\n", t_rcd_ps);
t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
}
/*-----------------------------------------------------------------------------+
* initdram. Initializes the 440EPx/GPx DDR SDRAM controller.
* Note: This routine runs from flash with a stack set up in the chip's
* sram space. It is important that the routine does not require .sbss, .bss or
* .data sections. It also cannot call routines that require these sections.
*-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
* Function: initdram
* Description: Configures SDRAM memory banks for DDR operation.
* Auto Memory Configuration option reads the DDR SDRAM EEPROMs
* via the IIC bus and then configures the DDR SDRAM memory
* banks appropriately. If Auto Memory Configuration is
* not used, it is assumed that no DIMM is plugged
*-----------------------------------------------------------------------------*/
phys_size_t initdram(int board_type)
{
unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
unsigned long dimm_ranks[MAXDIMMS];
unsigned long ranks;
unsigned long rows;
unsigned long banks;
unsigned long cols;
unsigned long width;
unsigned long const sdram_freq = get_bus_freq(0);
unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */
unsigned long cas_latency = 0; /* to quiet initialization warning */
unsigned long dram_size;
debug("\nEntering initdram()\n");
/*------------------------------------------------------------------
* Stop the DDR-SDRAM controller.
*-----------------------------------------------------------------*/
mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
/*
* Make sure I2C controller is initialized
* before continuing.
*/
/* switch to correct I2C bus */
i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
/*------------------------------------------------------------------
* Clear out the serial presence detect buffers.
* Perform IIC reads from the dimm. Fill in the spds.
* Check to see if the dimm slots are populated
*-----------------------------------------------------------------*/
get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Check the frequency supported for the dimms plugged.
*-----------------------------------------------------------------*/
check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
/*------------------------------------------------------------------
* Check and get size information.
*-----------------------------------------------------------------*/
get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
&cols, &width);
/*------------------------------------------------------------------
* Check the voltage type for the dimms plugged.
*-----------------------------------------------------------------*/
check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program registers for SDRAM controller.
*-----------------------------------------------------------------*/
mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
DDR0_00_DLL_START_POINT_DECODE(0x0A));
mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
DDR0_01_INT_MASK_ENCODE(0xFF));
program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
rows, &cas_latency);
program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
/*
* TODO: tFAW not found in SPD. Value of 13 taken from Sequoia
* board SDRAM, but may be overly conservative.
*/
mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
DDR0_07_TFAW_ENCODE(13) |
DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
DDR0_07_AREFRESH_ENCODE(0));
mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
DDR0_08_DDRII_ENCODE(1));
mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
DDR0_09_RTT_0_ENCODE(0x1) |
DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
program_ddr0_10(dimm_ranks, ranks);
program_ddr0_11(sdram_freq);
mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
DDR0_23_FWC_ENCODE(0));
program_ddr0_24(ranks);
program_ddr0_26(sdram_freq);
program_ddr0_27(sdram_freq);
mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
DDR0_28_EMRS2_DATA_ENCODE(0x0000));
mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
mtsdram(DDR0_42, DDR0_42_ADDR_PINS_ENCODE(14 - rows) |
DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
cols, banks);
program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
denali_sdram_register_dump();
dram_size = (width >= 64) ? 8 : 4;
dram_size *= 1 << cols;
dram_size *= banks;
dram_size *= 1 << rows;
dram_size *= ranks;
debug("dram_size = %lu\n", dram_size);
/* Start the SDRAM controler */
mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
denali_wait_for_dlllock();
#if defined(CONFIG_DDR_DATA_EYE)
/*
* Map the first 1 MiB of memory in the TLB, and perform the data eye
* search.
*/
program_tlb(0, CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE);
denali_core_search_data_eye();
denali_sdram_register_dump();
remove_tlb(CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE);
#endif
#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, 0);
sync();
/* Zero the memory */
debug("Zeroing SDRAM...");
#if defined(CONFIG_SYS_MEM_TOP_HIDE)
dcbz_area(CONFIG_SYS_SDRAM_BASE, dram_size - CONFIG_SYS_MEM_TOP_HIDE);
#else
#error Please define CONFIG_SYS_MEM_TOP_HIDE (see README) in your board config file
#endif
/* Write modified dcache lines back to memory */
clean_dcache_range(CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_SDRAM_BASE + dram_size - CONFIG_SYS_MEM_TOP_HIDE);
debug("Completed\n");
sync();
remove_tlb(CONFIG_SYS_SDRAM_BASE, dram_size);
#if defined(CONFIG_DDR_ECC)
/*
* If ECC is enabled, clear and enable interrupts
*/
if (is_ecc_enabled()) {
u32 val;
sync();
/* Clear error status */
mfsdram(DDR0_00, val);
mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
/* Set 'int_mask' parameter to functionnal value */
mfsdram(DDR0_01, val);
mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
DDR0_01_INT_MASK_ALL_OFF);
#if defined(CONFIG_DDR_DATA_EYE)
/*
* Running denali_core_search_data_eye() when ECC is enabled
* causes non-ECC machine checks. This clears them.
*/
print_mcsr();
mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
print_mcsr();
#endif
sync();
}
#endif /* defined(CONFIG_DDR_ECC) */
#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
return dram_size;
}
void board_add_ram_info(int use_default)
{
u32 val;
printf(" (ECC");
if (!is_ecc_enabled()) {
printf(" not");
}
printf(" enabled, %ld MHz", (2 * get_bus_freq(0)) / 1000000);
mfsdram(DDR0_03, val);
printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
}
#endif /* CONFIG_SPD_EEPROM */
|