1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
#include <common.h>
#include <i2c.h>
#include <hwconfig.h>
#include <asm/mmu.h>
#include <asm/fsl_ddr_sdram.h>
#include <asm/fsl_ddr_dimm_params.h>
#include <asm/fsl_law.h>
DECLARE_GLOBAL_DATA_PTR;
extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,
unsigned int ctrl_num);
/*
* Fixed sdram init -- doesn't use serial presence detect.
*/
extern fixed_ddr_parm_t fixed_ddr_parm_0[];
#if (CONFIG_NUM_DDR_CONTROLLERS == 2)
extern fixed_ddr_parm_t fixed_ddr_parm_1[];
#endif
phys_size_t fixed_sdram(void)
{
int i;
sys_info_t sysinfo;
char buf[32];
fsl_ddr_cfg_regs_t ddr_cfg_regs;
phys_size_t ddr_size;
unsigned int lawbar1_target_id;
get_sys_info(&sysinfo);
printf("Configuring DDR for %s MT/s data rate\n",
strmhz(buf, sysinfo.freqDDRBus));
for (i = 0; fixed_ddr_parm_0[i].max_freq > 0; i++) {
if ((sysinfo.freqDDRBus > fixed_ddr_parm_0[i].min_freq) &&
(sysinfo.freqDDRBus <= fixed_ddr_parm_0[i].max_freq)) {
memcpy(&ddr_cfg_regs,
fixed_ddr_parm_0[i].ddr_settings,
sizeof(ddr_cfg_regs));
break;
}
}
if (fixed_ddr_parm_0[i].max_freq == 0)
panic("Unsupported DDR data rate %s MT/s data rate\n",
strmhz(buf, sysinfo.freqDDRBus));
ddr_size = (phys_size_t) CONFIG_SYS_SDRAM_SIZE * 1024 * 1024;
ddr_cfg_regs.ddr_cdr1 = DDR_CDR1_DHC_EN;
fsl_ddr_set_memctl_regs(&ddr_cfg_regs, 0);
#if (CONFIG_NUM_DDR_CONTROLLERS == 2)
memcpy(&ddr_cfg_regs,
fixed_ddr_parm_1[i].ddr_settings,
sizeof(ddr_cfg_regs));
ddr_cfg_regs.ddr_cdr1 = DDR_CDR1_DHC_EN;
fsl_ddr_set_memctl_regs(&ddr_cfg_regs, 1);
#endif
/*
* setup laws for DDR. If not interleaving, presuming half memory on
* DDR1 and the other half on DDR2
*/
if (fixed_ddr_parm_0[i].ddr_settings->cs[0].config & 0x20000000) {
if (set_ddr_laws(CONFIG_SYS_DDR_SDRAM_BASE,
ddr_size,
LAW_TRGT_IF_DDR_INTRLV) < 0) {
printf("ERROR setting Local Access Windows for DDR\n");
return 0;
}
} else {
#if (CONFIG_NUM_DDR_CONTROLLERS == 2)
/* We require both controllers have identical DIMMs */
lawbar1_target_id = LAW_TRGT_IF_DDR_1;
if (set_ddr_laws(CONFIG_SYS_DDR_SDRAM_BASE,
ddr_size / 2,
lawbar1_target_id) < 0) {
printf("ERROR setting Local Access Windows for DDR\n");
return 0;
}
lawbar1_target_id = LAW_TRGT_IF_DDR_2;
if (set_ddr_laws(CONFIG_SYS_DDR_SDRAM_BASE + ddr_size / 2,
ddr_size / 2,
lawbar1_target_id) < 0) {
printf("ERROR setting Local Access Windows for DDR\n");
return 0;
}
#else
lawbar1_target_id = LAW_TRGT_IF_DDR_1;
if (set_ddr_laws(CONFIG_SYS_DDR_SDRAM_BASE,
ddr_size,
lawbar1_target_id) < 0) {
printf("ERROR setting Local Access Windows for DDR\n");
return 0;
}
#endif
}
return ddr_size;
}
static void get_spd(ddr3_spd_eeprom_t *spd, unsigned char i2c_address)
{
int ret;
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, sizeof(ddr3_spd_eeprom_t));
if (ret) {
debug("DDR: failed to read SPD from address %u\n", i2c_address);
memset(spd, 0, sizeof(ddr3_spd_eeprom_t));
}
}
unsigned int fsl_ddr_get_mem_data_rate(void)
{
return get_ddr_freq(0);
}
void fsl_ddr_get_spd(ddr3_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num)
{
unsigned int i;
unsigned int i2c_address = 0;
for (i = 0; i < CONFIG_DIMM_SLOTS_PER_CTLR; i++) {
if (ctrl_num == 0 && i == 0)
i2c_address = SPD_EEPROM_ADDRESS1;
else if (ctrl_num == 1 && i == 0)
i2c_address = SPD_EEPROM_ADDRESS2;
get_spd(&(ctrl_dimms_spd[i]), i2c_address);
}
}
typedef struct {
u32 datarate_mhz_low;
u32 datarate_mhz_high;
u32 n_ranks;
u32 clk_adjust;
u32 wrlvl_start;
u32 cpo;
u32 write_data_delay;
u32 force_2T;
} board_specific_parameters_t;
/* ranges for parameters:
* wr_data_delay = 0-6
* clk adjust = 0-8
* cpo 2-0x1E (30)
*/
/* XXX: these values need to be checked for all interleaving modes. */
/* XXX: No reliable dual-rank 800 MHz setting has been found. It may
* seem reliable, but errors will appear when memory intensive
* program is run. */
/* XXX: Single rank at 800 MHz is OK. */
const board_specific_parameters_t board_specific_parameters[][30] = {
{
/*
* memory controller 0
* lo| hi| num| clk| wrlvl | cpo |wrdata|2T
* mhz| mhz|ranks|adjst| start | delay|
*/
{ 0, 850, 4, 4, 6, 0xff, 2, 0},
{851, 950, 4, 5, 7, 0xff, 2, 0},
{951, 1050, 4, 5, 8, 0xff, 2, 0},
{1051, 1250, 4, 5, 10, 0xff, 2, 0},
{1251, 1350, 4, 5, 11, 0xff, 2, 0},
{ 0, 850, 2, 5, 6, 0xff, 2, 0},
{851, 950, 2, 5, 7, 0xff, 2, 0},
{951, 1050, 2, 5, 7, 0xff, 2, 0},
{1051, 1250, 2, 4, 6, 0xff, 2, 0},
{1251, 1350, 2, 5, 7, 0xff, 2, 0},
},
{
/*
* memory controller 1
* lo| hi| num| clk| wrlvl | cpo |wrdata|2T
* mhz| mhz|ranks|adjst| start | delay|
*/
{ 0, 850, 4, 4, 6, 0xff, 2, 0},
{851, 950, 4, 5, 7, 0xff, 2, 0},
{951, 1050, 4, 5, 8, 0xff, 2, 0},
{1051, 1250, 4, 5, 10, 0xff, 2, 0},
{1251, 1350, 4, 5, 11, 0xff, 2, 0},
{ 0, 850, 2, 5, 6, 0xff, 2, 0},
{851, 950, 2, 5, 7, 0xff, 2, 0},
{951, 1050, 2, 5, 7, 0xff, 2, 0},
{1051, 1250, 2, 4, 6, 0xff, 2, 0},
{1251, 1350, 2, 5, 7, 0xff, 2, 0},
}
};
void fsl_ddr_board_options(memctl_options_t *popts,
dimm_params_t *pdimm,
unsigned int ctrl_num)
{
const board_specific_parameters_t *pbsp =
&(board_specific_parameters[ctrl_num][0]);
u32 num_params = sizeof(board_specific_parameters[ctrl_num]) /
sizeof(board_specific_parameters[0][0]);
u32 i;
ulong ddr_freq;
/* Get clk_adjust, cpo, write_data_delay,2T, according to the board ddr
* freqency and n_banks specified in board_specific_parameters table.
*/
ddr_freq = get_ddr_freq(0) / 1000000;
for (i = 0; i < num_params; i++) {
if (ddr_freq >= pbsp->datarate_mhz_low &&
ddr_freq <= pbsp->datarate_mhz_high &&
pdimm[0].n_ranks == pbsp->n_ranks) {
popts->cpo_override = pbsp->cpo;
popts->write_data_delay = pbsp->write_data_delay;
popts->clk_adjust = pbsp->clk_adjust;
popts->wrlvl_start = pbsp->wrlvl_start;
popts->twoT_en = pbsp->force_2T;
}
pbsp++;
}
/*
* Factors to consider for half-strength driver enable:
* - number of DIMMs installed
*/
popts->half_strength_driver_enable = 0;
/*
* Write leveling override
*/
popts->wrlvl_override = 1;
popts->wrlvl_sample = 0xf;
/*
* Rtt and Rtt_WR override
*/
popts->rtt_override = 0;
/* Enable ZQ calibration */
popts->zq_en = 1;
/* DHC_EN =1, ODT = 60 Ohm */
popts->ddr_cdr1 = DDR_CDR1_DHC_EN;
/* override SPD values. rcw_2 should vary at differnt speed */
if (pdimm[0].n_ranks == 4) {
popts->rcw_override = 1;
popts->rcw_1 = 0x000a5a00;
if (ddr_freq <= 800)
popts->rcw_2 = 0x00000000;
else if (ddr_freq <= 1066)
popts->rcw_2 = 0x00100000;
else if (ddr_freq <= 1333)
popts->rcw_2 = 0x00200000;
else
popts->rcw_2 = 0x00300000;
}
}
phys_size_t initdram(int board_type)
{
phys_size_t dram_size;
puts("Initializing....");
if (fsl_use_spd()) {
puts("using SPD\n");
dram_size = fsl_ddr_sdram();
} else {
puts("using fixed parameters\n");
dram_size = fixed_sdram();
}
dram_size = setup_ddr_tlbs(dram_size / 0x100000);
dram_size *= 0x100000;
puts(" DDR: ");
return dram_size;
}
|