1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013 Keymile AG
* Valentin Longchamp <valentin.longchamp@keymile.com>
*
* Copyright 2011,2012 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <init.h>
#include <netdev.h>
#include <linux/compiler.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/cache.h>
#include <asm/immap_85xx.h>
#include <asm/fsl_law.h>
#include <asm/fsl_serdes.h>
#include <asm/fsl_portals.h>
#include <asm/fsl_liodn.h>
#include <fm_eth.h>
#include "../common/common.h"
#include "kmp204x.h"
static uchar ivm_content[CONFIG_SYS_IVM_EEPROM_MAX_LEN];
int checkboard(void)
{
printf("Board: Keymile %s\n", CONFIG_SYS_CONFIG_NAME);
return 0;
}
/* I2C deblocking uses the algorithm defined in board/keymile/common/common.c
* 2 dedicated QRIO GPIOs externally pull the SCL and SDA lines
* For I2C only the low state is activly driven and high state is pulled-up
* by a resistor. Therefore the deblock GPIOs are used
* -> as an active output to drive a low state
* -> as an open-drain input to have a pulled-up high state
*/
/* QRIO GPIOs used for deblocking */
#define DEBLOCK_PORT1 GPIO_A
#define DEBLOCK_SCL1 20
#define DEBLOCK_SDA1 21
/* By default deblock GPIOs are floating */
static void i2c_deblock_gpio_cfg(void)
{
/* set I2C bus 1 deblocking GPIOs input, but 0 value for open drain */
qrio_gpio_direction_input(DEBLOCK_PORT1, DEBLOCK_SCL1);
qrio_gpio_direction_input(DEBLOCK_PORT1, DEBLOCK_SDA1);
qrio_set_gpio(DEBLOCK_PORT1, DEBLOCK_SCL1, 0);
qrio_set_gpio(DEBLOCK_PORT1, DEBLOCK_SDA1, 0);
}
void set_sda(int state)
{
qrio_set_opendrain_gpio(DEBLOCK_PORT1, DEBLOCK_SDA1, state);
}
void set_scl(int state)
{
qrio_set_opendrain_gpio(DEBLOCK_PORT1, DEBLOCK_SCL1, state);
}
int get_sda(void)
{
return qrio_get_gpio(DEBLOCK_PORT1, DEBLOCK_SDA1);
}
int get_scl(void)
{
return qrio_get_gpio(DEBLOCK_PORT1, DEBLOCK_SCL1);
}
#define ZL30158_RST 8
#define BFTIC4_RST 0
#define RSTRQSR1_WDT_RR 0x00200000
#define RSTRQSR1_SW_RR 0x00100000
int board_early_init_f(void)
{
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
bool cpuwd_flag = false;
/* configure mode for uP reset request */
qrio_uprstreq(UPREQ_CORE_RST);
/* board only uses the DDR_MCK0, so disable the DDR_MCK1/2/3 */
setbits_be32(&gur->ddrclkdr, 0x001f000f);
/* set reset reason according CPU register */
if ((gur->rstrqsr1 & (RSTRQSR1_WDT_RR | RSTRQSR1_SW_RR)) ==
RSTRQSR1_WDT_RR)
cpuwd_flag = true;
qrio_cpuwd_flag(cpuwd_flag);
/* clear CPU bits by writing 1 */
setbits_be32(&gur->rstrqsr1, RSTRQSR1_WDT_RR | RSTRQSR1_SW_RR);
/* set the BFTIC's prstcfg to reset at power-up and unit reset only */
qrio_prstcfg(BFTIC4_RST, PRSTCFG_POWUP_UNIT_RST);
/* and enable WD on it */
qrio_wdmask(BFTIC4_RST, true);
/* set the ZL30138's prstcfg to reset at power-up only */
qrio_prstcfg(ZL30158_RST, PRSTCFG_POWUP_RST);
/* and take it out of reset as soon as possible (needed for Hooper) */
qrio_prst(ZL30158_RST, false, false);
return 0;
}
int board_early_init_r(void)
{
int ret = 0;
/* Flush d-cache and invalidate i-cache of any FLASH data */
flush_dcache();
invalidate_icache();
set_liodns();
setup_qbman_portals();
ret = trigger_fpga_config();
if (ret)
printf("error triggering PCIe FPGA config\n");
/* enable the Unit LED (red) & Boot LED (on) */
qrio_set_leds();
/* enable Application Buffer */
qrio_enable_app_buffer();
return ret;
}
unsigned long get_board_sys_clk(unsigned long dummy)
{
return 66666666;
}
#define ETH_FRONT_PHY_RST 15
#define QSFP2_RST 11
#define QSFP1_RST 10
#define ZL30343_RST 9
int misc_init_f(void)
{
/* configure QRIO pis for i2c deblocking */
i2c_deblock_gpio_cfg();
/* configure the front phy's prstcfg and take it out of reset */
qrio_prstcfg(ETH_FRONT_PHY_RST, PRSTCFG_POWUP_UNIT_CORE_RST);
qrio_prst(ETH_FRONT_PHY_RST, false, false);
/* set the ZL30343 prstcfg to reset at power-up only */
qrio_prstcfg(ZL30343_RST, PRSTCFG_POWUP_RST);
/* and enable the WD on it */
qrio_wdmask(ZL30343_RST, true);
/* set the QSFPs' prstcfg to reset at power-up and unit rst only */
qrio_prstcfg(QSFP1_RST, PRSTCFG_POWUP_UNIT_RST);
qrio_prstcfg(QSFP2_RST, PRSTCFG_POWUP_UNIT_RST);
/* and enable the WD on them */
qrio_wdmask(QSFP1_RST, true);
qrio_wdmask(QSFP2_RST, true);
return 0;
}
#define NUM_SRDS_BANKS 2
int misc_init_r(void)
{
serdes_corenet_t *regs = (void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR;
u32 expected[NUM_SRDS_BANKS] = {SRDS_PLLCR0_RFCK_SEL_100,
SRDS_PLLCR0_RFCK_SEL_125};
unsigned int i;
/* check SERDES reference clocks */
for (i = 0; i < NUM_SRDS_BANKS; i++) {
u32 actual = in_be32(®s->bank[i].pllcr0);
actual &= SRDS_PLLCR0_RFCK_SEL_MASK;
if (actual != expected[i]) {
printf("Warning: SERDES bank %u expects reference \
clock %sMHz, but actual is %sMHz\n", i + 1,
serdes_clock_to_string(expected[i]),
serdes_clock_to_string(actual));
}
}
ivm_read_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN,
CONFIG_PIGGY_MAC_ADDRESS_OFFSET);
return 0;
}
#if defined(CONFIG_HUSH_INIT_VAR)
int hush_init_var(void)
{
ivm_analyze_eeprom(ivm_content, CONFIG_SYS_IVM_EEPROM_MAX_LEN);
return 0;
}
#endif
#if defined(CONFIG_LAST_STAGE_INIT)
int last_stage_init(void)
{
#if defined(CONFIG_KMCOGE4)
/* on KMCOGE4, the BFTIC4 is on the LBAPP2 */
struct bfticu_iomap *bftic4 =
(struct bfticu_iomap *)CONFIG_SYS_LBAPP2_BASE;
u8 dip_switch = in_8((u8 *)&(bftic4->mswitch)) & BFTICU_DIPSWITCH_MASK;
if (dip_switch != 0) {
/* start bootloader */
puts("DIP: Enabled\n");
env_set("actual_bank", "0");
}
#endif
set_km_env();
return 0;
}
#endif
#ifdef CONFIG_SYS_DPAA_FMAN
void fdt_fixup_fman_mac_addresses(void *blob)
{
int node, i, ret;
char *tmp, *end;
unsigned char mac_addr[6];
/* get the mac addr from env */
tmp = env_get("ethaddr");
if (!tmp) {
printf("ethaddr env variable not defined\n");
return;
}
for (i = 0; i < 6; i++) {
mac_addr[i] = tmp ? simple_strtoul(tmp, &end, 16) : 0;
if (tmp)
tmp = (*end) ? end+1 : end;
}
/* find the correct fdt ethernet path and correct it */
node = fdt_path_offset(blob, "/soc/fman/ethernet@e8000");
if (node < 0) {
printf("no /soc/fman/ethernet path offset\n");
return;
}
ret = fdt_setprop(blob, node, "local-mac-address", &mac_addr, 6);
if (ret) {
printf("error setting local-mac-address property\n");
return;
}
}
#endif
int ft_board_setup(void *blob, bd_t *bd)
{
phys_addr_t base;
phys_size_t size;
ft_cpu_setup(blob, bd);
base = env_get_bootm_low();
size = env_get_bootm_size();
fdt_fixup_memory(blob, (u64)base, (u64)size);
#if defined(CONFIG_HAS_FSL_DR_USB) || defined(CONFIG_HAS_FSL_MPH_USB)
fsl_fdt_fixup_dr_usb(blob, bd);
#endif
#ifdef CONFIG_PCI
pci_of_setup(blob, bd);
#endif
fdt_fixup_liodn(blob);
#ifdef CONFIG_SYS_DPAA_FMAN
fdt_fixup_fman_ethernet(blob);
fdt_fixup_fman_mac_addresses(blob);
#endif
return 0;
}
#if defined(CONFIG_POST)
/* DIC26_SELFTEST GPIO used to start factory test sw */
#define SELFTEST_PORT GPIO_A
#define SELFTEST_PIN 31
int post_hotkeys_pressed(void)
{
qrio_gpio_direction_input(SELFTEST_PORT, SELFTEST_PIN);
return qrio_get_gpio(SELFTEST_PORT, SELFTEST_PIN);
}
#endif
|