1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
.. SPDX-License-Identifier: GPL-2.0+
.. Copyright (C) 2020 Sean Anderson <seanga2@gmail.com>
Maix Bit
========
Several of the Sipeed Maix series of boards cotain the Kendryte K210 processor,
a 64-bit RISC-V CPU. This processor contains several peripherals to accelerate
neural network processing and other "ai" tasks. This includes a "KPU" neural
network processor, an audio processor supporting beamforming reception, and a
digital video port supporting capture and output at VGA resolution. Other
peripherals include 8M of SRAM (accessible with and without caching); remappable
pins, including 40 GPIOs; AES, FFT, and SHA256 accelerators; a DMA controller;
and I2C, I2S, and SPI controllers. Maix peripherals vary, but include spi flash;
on-board usb-serial bridges; ports for cameras, displays, and sd cards; and
ESP32 chips. Currently, only the Sipeed Maix Bit V2.0 (bitm) is supported, but
the boards are fairly similar.
Documentation for Maix boards is available from
`Sipeed's website <http://dl.sipeed.com/MAIX/HDK/>`_.
Documentation for the Kendryte K210 is available from
`Kendryte's website <https://kendryte.com/downloads/>`_. However, hardware
details are rather lacking, so most technical reference has been taken from the
`standalone sdk <https://github.com/kendryte/kendryte-standalone-sdk>`_.
Build and boot steps
--------------------
To build u-boot, run
.. code-block:: none
make sipeed_maix_bitm_defconfig
make CROSS_COMPILE=<your cross compile prefix>
To flash u-boot to a maix bit, run
.. code-block:: none
kflash -tp /dev/<your tty here> -B bit_mic u-boot-dtb.bin
Boot output should look like the following:
.. code-block:: none
U-Boot 2020.04-rc2-00087-g2221cc09c1-dirty (Feb 28 2020 - 13:53:09 -0500)
DRAM: 8 MiB
In: serial@38000000
Out: serial@38000000
Err: serial@38000000
=>
Loading Images
^^^^^^^^^^^^^^
To load a kernel, transfer it over serial.
.. code-block:: none
=> loady 80000000 1500000
## Switch baudrate to 1500000 bps and press ENTER ...
*** baud: 1500000
*** baud: 1500000 ***
## Ready for binary (ymodem) download to 0x80000000 at 1500000 bps...
C
*** file: loader.bin
$ sz -vv loader.bin
Sending: loader.bin
Bytes Sent:2478208 BPS:72937
Sending:
Ymodem sectors/kbytes sent: 0/ 0k
Transfer complete
*** exit status: 0 ***
## Total Size = 0x0025d052 = 2478162 Bytes
## Switch baudrate to 115200 bps and press ESC ...
*** baud: 115200
*** baud: 115200 ***
=>
Running Programs
^^^^^^^^^^^^^^^^
Binaries
""""""""
To run a bare binary, use the ``go`` command:
.. code-block:: none
=> loady
## Ready for binary (ymodem) download to 0x80000000 at 115200 bps...
C
*** file: ./examples/standalone/hello_world.bin
$ sz -vv ./examples/standalone/hello_world.bin
Sending: hello_world.bin
Bytes Sent: 4864 BPS:649
Sending:
Ymodem sectors/kbytes sent: 0/ 0k
Transfer complete
*** exit status: 0 ***
(CAN) packets, 5 retries
## Total Size = 0x000012f8 = 4856 Bytes
=> go 80000000
## Starting application at 0x80000000 ...
Example expects ABI version 9
Actual U-Boot ABI version 9
Hello World
argc = 1
argv[0] = "80000000"
argv[1] = "<NULL>"
Hit any key to exit ...
Legacy Images
"""""""""""""
To run legacy images, use the ``bootm`` command:
.. code-block:: none
$ tools/mkimage -A riscv -O u-boot -T standalone -C none -a 80000000 -e 80000000 -d examples/standalone/hello_world.bin hello_world.img
Image Name:
Created: Thu Mar 5 12:04:10 2020
Image Type: RISC-V U-Boot Standalone Program (uncompressed)
Data Size: 4856 Bytes = 4.74 KiB = 0.00 MiB
Load Address: 80000000
Entry Point: 80000000
$ picocom -b 115200 /dev/ttyUSB0i
=> loady
## Ready for binary (ymodem) download to 0x80000000 at 115200 bps...
C
*** file: hello_world.img
$ sz -vv hello_world.img
Sending: hello_world.img
Bytes Sent: 4992 BPS:665
Sending:
Ymodem sectors/kbytes sent: 0/ 0k
Transfer complete
*** exit status: 0 ***
CAN) packets, 3 retries
## Total Size = 0x00001338 = 4920 Bytes
=> bootm
## Booting kernel from Legacy Image at 80000000 ...
Image Name:
Image Type: RISC-V U-Boot Standalone Program (uncompressed)
Data Size: 4856 Bytes = 4.7 KiB
Load Address: 80000000
Entry Point: 80000000
Verifying Checksum ... OK
Loading Standalone Program
Example expects ABI version 9
Actual U-Boot ABI version 9
Hello World
argc = 0
argv[0] = "<NULL>"
Hit any key to exit ...
Over- and Under-clocking
------------------------
To change the clock speed of the K210, you will need to enable
``CONFIG_CLK_K210_SET_RATE`` and edit the board's device tree. To do this, add a
section to ``arch/riscv/arch/riscv/dts/k210-maix-bit.dts`` like the following:
.. code-block:: none
&sysclk {
assigned-clocks = <&sysclk K210_CLK_PLL0>;
assigned-clock-rates = <800000000>;
};
There are three PLLs on the K210: PLL0 is the parent of most of the components,
including the CPU and RAM. PLL1 is the parent of the neural network coprocessor.
PLL2 is the parent of the sound processing devices. Note that child clocks of
PLL0 and PLL2 run at *half* the speed of the PLLs. For example, if PLL0 is
running at 800 MHz, then the CPU will run at 400 MHz. This is the example given
above. The CPU can be overclocked to around 600 MHz, and underclocked to 26 MHz.
It is possible to set PLL2's parent to PLL0. The plls are more accurate when
converting between similar frequencies. This makes it easier to get an accurate
frequency for I2S. As an example, consider sampling an I2S device at 44.1 kHz.
On this device, the I2S serial clock runs at 64 times the sample rate.
Therefore, we would like to run PLL2 at an even multiple of 2.8224 MHz. If
PLL2's parent is IN0, we could use a frequency of 390 MHz (the same as the CPU's
default speed). Dividing by 138 yields a serial clock of about 2.8261 MHz. This
results in a sample rate of 44.158 kHz---around 50 Hz or .1% too fast. If,
instead, we set PLL2's parent to PLL1 running at 390 MHz, and request a rate of
2.8224 * 136 = 383.8464 MHz, the achieved rate is 383.90625 MHz. Dividing by 136
yields a serial clock of about 2.8228 MHz. This results in a sample rate of
44.107 kHz---just 7 Hz or .02% too fast. This configuration is shown in the
following example:
.. code-block:: none
&sysclk {
assigned-clocks = <&sysclk K210_CLK_PLL1>, <&sysclk K210_CLK_PLL2>;
assigned-clock-parents = <0>, <&sysclk K210_CLK_PLL1>;
assigned-clock-rates = <390000000>, <383846400>;
};
There are a couple of quirks to the PLLs. First, there are more frequency ratios
just above and below 1.0, but there is a small gap around 1.0. To be explicit,
if the input frequency is 100 MHz, it would be impossible to have an output of
99 or 101 MHz. In addition, there is a maximum frequency for the internal VCO,
so higher input/output frequencies will be less accurate than lower ones.
Technical Details
-----------------
Boot Sequence
^^^^^^^^^^^^^
1. ``RESET`` pin is deasserted.
2. Both harts begin executing at ``0x00001000``.
3. Both harts jump to firmware at ``0x88000000``.
4. One hart is chosen as a boot hart.
5. Firmware reads value of pin ``IO_16`` (ISP).
* If the pin is low, enter ISP mode. This mode allows loading data to ram,
writing it to flash, and booting from specific addresses.
* If the pin is high, continue boot.
6. Firmware reads the next stage from flash (SPI3) to address ``0x80000000``.
* If byte 0 is 1, the next stage is decrypted using the built-in AES
accelerator and the one-time programmable, 128-bit AES key.
* Bytes 1 to 4 hold the length of the next stage.
* The SHA-256 sum of the next stage is automatically calculated, and verified
against the 32 bytes following the next stage.
7. The boot hart sends an IPI to the other hart telling it to jump to the next
stage.
8. The boot hart jumps to ``0x80000000``.
Memory Map
^^^^^^^^^^
========== ========= ===========
Address Size Description
========== ========= ===========
0x00000000 0x1000 debug
0x00001000 0x1000 rom
0x02000000 0xC000 clint
0x0C000000 0x4000000 plic
0x38000000 0x1000 uarths
0x38001000 0x1000 gpiohs
0x40000000 0x400000 sram0 (non-cached)
0x40400000 0x200000 sram1 (non-cached)
0x40600000 0x200000 airam (non-cached)
0x40800000 0xC00000 kpu
0x42000000 0x400000 fft
0x50000000 0x1000 dmac
0x50200000 0x200000 apb0
0x50200000 0x80 gpio
0x50210000 0x100 uart0
0x50220000 0x100 uart1
0x50230000 0x100 uart2
0x50240000 0x100 spi slave
0x50250000 0x200 i2s0
0x50250200 0x200 apu
0x50260000 0x200 i2s1
0x50270000 0x200 i2s2
0x50280000 0x100 i2c0
0x50290000 0x100 i2c1
0x502A0000 0x100 i2c2
0x502B0000 0x100 fpioa
0x502C0000 0x100 sha256
0x502D0000 0x100 timer0
0x502E0000 0x100 timer1
0x502F0000 0x100 timer2
0x50400000 0x200000 apb1
0x50400000 0x100 wdt0
0x50410000 0x100 wdt1
0x50420000 0x100 otp control
0x50430000 0x100 dvp
0x50440000 0x100 sysctl
0x50450000 0x100 aes
0x50460000 0x100 rtc
0x52000000 0x4000000 apb2
0x52000000 0x100 spi0
0x53000000 0x100 spi1
0x54000000 0x200 spi3
0x80000000 0x400000 sram0 (cached)
0x80400000 0x200000 sram1 (cached)
0x80600000 0x200000 airam (cached)
0x88000000 0x20000 otp
0x88000000 0xC200 firmware
0x8801C000 0x1000 riscv priv spec 1.9 config
0x8801D000 0x2000 flattened device tree (contains only addresses and
interrupts)
0x8801f000 0x1000 credits
========== ========= ===========
|