summaryrefslogtreecommitdiff
path: root/doc/device-tree-bindings/gpio/gpio.txt
blob: e146917ff3342674ebe30b9a50be0df367a2ae22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
Specifying GPIO information for devices
============================================

1) gpios property
-----------------

Nodes that makes use of GPIOs should specify them using one or more
properties, each containing a 'gpio-list':

	gpio-list ::= <single-gpio> [gpio-list]
	single-gpio ::= <gpio-phandle> <gpio-specifier>
	gpio-phandle : phandle to gpio controller node
	gpio-specifier : Array of #gpio-cells specifying specific gpio
			 (controller specific)

GPIO properties should be named "[<name>-]gpios", with <name> being the purpose
of this GPIO for the device. While a non-existent <name> is considered valid
for compatibility reasons (resolving to the "gpios" property), it is not allowed
for new bindings.

GPIO properties can contain one or more GPIO phandles, but only in exceptional
cases should they contain more than one. If your device uses several GPIOs with
distinct functions, reference each of them under its own property, giving it a
meaningful name. The only case where an array of GPIOs is accepted is when
several GPIOs serve the same function (e.g. a parallel data line).

The exact purpose of each gpios property must be documented in the device tree
binding of the device.

The following example could be used to describe GPIO pins used as device enable
and bit-banged data signals:

	gpio1: gpio1 {
		gpio-controller
		 #gpio-cells = <2>;
	};
	gpio2: gpio2 {
		gpio-controller
		 #gpio-cells = <1>;
	};
	[...]

	enable-gpios = <&gpio2 2>;
	data-gpios = <&gpio1 12 0>,
		     <&gpio1 13 0>,
		     <&gpio1 14 0>,
		     <&gpio1 15 0>;

Note that gpio-specifier length is controller dependent.  In the
above example, &gpio1 uses 2 cells to specify a gpio, while &gpio2
only uses one.

gpio-specifier may encode: bank, pin position inside the bank,
whether pin is open-drain and whether pin is logically inverted.
Exact meaning of each specifier cell is controller specific, and must
be documented in the device tree binding for the device. Use the macros
defined in include/dt-bindings/gpio/gpio.h whenever possible:

Example of a node using GPIOs:

	node {
		enable-gpios = <&qe_pio_e 18 GPIO_ACTIVE_HIGH>;
	};

GPIO_ACTIVE_HIGH is 0, so in this example gpio-specifier is "18 0" and encodes
GPIO pin number, and GPIO flags as accepted by the "qe_pio_e" gpio-controller.

1.1) GPIO specifier best practices
----------------------------------

A gpio-specifier should contain a flag indicating the GPIO polarity; active-
high or active-low. If it does, the following best practices should be
followed:

The gpio-specifier's polarity flag should represent the physical level at the
GPIO controller that achieves (or represents, for inputs) a logically asserted
value at the device. The exact definition of logically asserted should be
defined by the binding for the device. If the board inverts the signal between
the GPIO controller and the device, then the gpio-specifier will represent the
opposite physical level than the signal at the device's pin.

When the device's signal polarity is configurable, the binding for the
device must either:

a) Define a single static polarity for the signal, with the expectation that
any software using that binding would statically program the device to use
that signal polarity.

The static choice of polarity may be either:

a1) (Preferred) Dictated by a binding-specific DT property.

or:

a2) Defined statically by the DT binding itself.

In particular, the polarity cannot be derived from the gpio-specifier, since
that would prevent the DT from separately representing the two orthogonal
concepts of configurable signal polarity in the device, and possible board-
level signal inversion.

or:

b) Pick a single option for device signal polarity, and document this choice
in the binding. The gpio-specifier should represent the polarity of the signal
(at the GPIO controller) assuming that the device is configured for this
particular signal polarity choice. If software chooses to program the device
to generate or receive a signal of the opposite polarity, software will be
responsible for correctly interpreting (inverting) the GPIO signal at the GPIO
controller.

2) gpio-controller nodes
------------------------

Every GPIO controller node must contain both an empty "gpio-controller"
property, and a #gpio-cells integer property, which indicates the number of
cells in a gpio-specifier.

Example of two SOC GPIO banks defined as gpio-controller nodes:

	qe_pio_a: gpio-controller@1400 {
		compatible = "fsl,qe-pario-bank-a", "fsl,qe-pario-bank";
		reg = <0x1400 0x18>;
		gpio-controller;
		#gpio-cells = <2>;
	};

	qe_pio_e: gpio-controller@1460 {
		compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
		reg = <0x1460 0x18>;
		gpio-controller;
		#gpio-cells = <2>;
	};

2.1) gpio- and pin-controller interaction
-----------------------------------------

Some or all of the GPIOs provided by a GPIO controller may be routed to pins
on the package via a pin controller. This allows muxing those pins between
GPIO and other functions.

It is useful to represent which GPIOs correspond to which pins on which pin
controllers. The gpio-ranges property described below represents this, and
contains information structures as follows:

	gpio-range-list ::= <single-gpio-range> [gpio-range-list]
	single-gpio-range ::= <numeric-gpio-range> | <named-gpio-range>
	numeric-gpio-range ::=
			<pinctrl-phandle> <gpio-base> <pinctrl-base> <count>
	named-gpio-range ::= <pinctrl-phandle> <gpio-base> '<0 0>'
	pinctrl-phandle : phandle to pin controller node
	gpio-base : Base GPIO ID in the GPIO controller
	pinctrl-base : Base pinctrl pin ID in the pin controller
	count : The number of GPIOs/pins in this range

The "pin controller node" mentioned above must conform to the bindings
described in ../pinctrl/pinctrl-bindings.txt.

In case named gpio ranges are used (ranges with both <pinctrl-base> and
<count> set to 0), the property gpio-ranges-group-names contains one string
for every single-gpio-range in gpio-ranges:
	gpiorange-names-list ::= <gpiorange-name> [gpiorange-names-list]
	gpiorange-name : Name of the pingroup associated to the GPIO range in
			the respective pin controller.

Elements of gpiorange-names-list corresponding to numeric ranges contain
the empty string. Elements of gpiorange-names-list corresponding to named
ranges contain the name of a pin group defined in the respective pin
controller. The number of pins/GPIOs in the range is the number of pins in
that pin group.

Previous versions of this binding required all pin controller nodes that
were referenced by any gpio-ranges property to contain a property named
#gpio-range-cells with value <3>. This requirement is now deprecated.
However, that property may still exist in older device trees for
compatibility reasons, and would still be required even in new device
trees that need to be compatible with older software.

Example 1:

	qe_pio_e: gpio-controller@1460 {
		#gpio-cells = <2>;
		compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
		reg = <0x1460 0x18>;
		gpio-controller;
		gpio-ranges = <&pinctrl1 0 20 10>, <&pinctrl2 10 50 20>;
	};

Here, a single GPIO controller has GPIOs 0..9 routed to pin controller
pinctrl1's pins 20..29, and GPIOs 10..19 routed to pin controller pinctrl2's
pins 50..59.

Example 2:

	gpio_pio_i: gpio-controller@14B0 {
		#gpio-cells = <2>;
		compatible = "fsl,qe-pario-bank-e", "fsl,qe-pario-bank";
		reg = <0x1480 0x18>;
		gpio-controller;
		gpio-ranges =			<&pinctrl1 0 20 10>,
						<&pinctrl2 10 0 0>,
						<&pinctrl1 15 0 10>,
						<&pinctrl2 25 0 0>;
		gpio-ranges-group-names =	"",
						"foo",
						"",
						"bar";
	};

Here, three GPIO ranges are defined wrt. two pin controllers. pinctrl1 GPIO
ranges are defined using pin numbers whereas the GPIO ranges wrt. pinctrl2
are named "foo" and "bar".

3) GPIO hog definitions
-----------------------

The GPIO chip may contain GPIO hog definitions. GPIO hogging is a mechanism
providing automatic GPIO request and configuration as part of the
gpio-controller's driver probe function.

Each GPIO hog definition is represented as a child node of the GPIO controller.
Required properties:
- gpio-hog:   A property specifying that this child node represents a GPIO hog.
- gpios:      Store the GPIO information (id, flags) for the GPIO to
	      affect.

              ! Not yet support more than one gpio !

Only one of the following properties scanned in the order shown below.
- input:      A property specifying to set the GPIO direction as input.
- output-low  A property specifying to set the GPIO direction as output with
	      the value low.
- output-high A property specifying to set the GPIO direction as output with
	      the value high.

Optional properties:
- line-name:  The GPIO label name. If not present the node name is used.

Example:

        tca6416@20 {
                compatible = "ti,tca6416";
                reg = <0x20>;
                #gpio-cells = <2>;
                gpio-controller;

                env_reset {
                        gpio-hog;
                        input;
                        gpios = <6 GPIO_ACTIVE_LOW>;
                };
                boot_rescue {
                        gpio-hog;
                        input;
                        line-name = "foo-bar-gpio";
                        gpios = <7 GPIO_ACTIVE_LOW>;
                };
        };

For the above Example you can than access the gpio in your boardcode
with:

	struct gpio_desc *desc;
	int ret;

	ret = gpio_hog_lookup_name("boot_rescue", &desc);
	if (ret)
		return;
	if (dm_gpio_get_value(desc) == 1)
		printf("\nBooting into Rescue System\n");
	else if (dm_gpio_get_value(desc) == 0)
		printf("\nBoot normal\n");