1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
|
/*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Patrice Chotard, <patrice.chotard@st.com> for STMicroelectronics.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <dm/root.h>
#include <dt-bindings/clock/stm32h7-clks.h>
DECLARE_GLOBAL_DATA_PTR;
/* RCC CR specific definitions */
#define RCC_CR_HSION BIT(0)
#define RCC_CR_HSIRDY BIT(2)
#define RCC_CR_HSEON BIT(16)
#define RCC_CR_HSERDY BIT(17)
#define RCC_CR_HSEBYP BIT(18)
#define RCC_CR_PLL1ON BIT(24)
#define RCC_CR_PLL1RDY BIT(25)
#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
#define RCC_CR_HSIDIV_SHIFT 3
#define RCC_CFGR_SW_MASK GENMASK(2, 0)
#define RCC_CFGR_SW_HSI 0
#define RCC_CFGR_SW_CSI 1
#define RCC_CFGR_SW_HSE 2
#define RCC_CFGR_SW_PLL1 3
#define RCC_PLLCKSELR_PLLSRC_HSI 0
#define RCC_PLLCKSELR_PLLSRC_CSI 1
#define RCC_PLLCKSELR_PLLSRC_HSE 2
#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
#define RCC_PLLCKSELR_DIVM1_SHIFT 4
#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
#define RCC_PLL1DIVR_DIVP1_SHIFT 9
#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
#define RCC_PLL1DIVR_DIVR1_SHIFT 24
#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
#define RCC_PLL1FRACR_FRACN1_SHIFT 3
#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
#define PLL1RGE_1_2_MHZ 0
#define PLL1RGE_2_4_MHZ 1
#define PLL1RGE_4_8_MHZ 2
#define PLL1RGE_8_16_MHZ 3
#define RCC_PLLCFGR_DIVP1EN BIT(16)
#define RCC_PLLCFGR_DIVQ1EN BIT(17)
#define RCC_PLLCFGR_DIVR1EN BIT(18)
#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
#define RCC_D1CFGR_HPRE_DIV2 8
#define RCC_D1CFGR_D1PPRE_SHIFT 4
#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
#define RCC_D1CFGR_D1CPRE_SHIFT 8
#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
#define RCC_D2CFGR_D2PPRE1_SHIFT 4
#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
#define RCC_D2CFGR_D2PPRE2_SHIFT 8
#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
#define RCC_D3CFGR_D3PPRE_SHIFT 4
#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
#define FMCSRC_HCLKD1 0
#define FMCSRC_PLL1_Q_CK 1
#define FMCSRC_PLL2_R_CK 2
#define FMCSRC_PER_CK 3
#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
#define RCC_D1CCIPR_QSPISRC_SHIFT 4
#define QSPISRC_HCLKD1 0
#define QSPISRC_PLL1_Q_CK 1
#define QSPISRC_PLL2_R_CK 2
#define QSPISRC_PER_CK 3
#define PWR_CR3 0x0c
#define PWR_CR3_SCUEN BIT(2)
#define PWR_D3CR 0x18
#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
#define PWR_D3CR_VOS_SHIFT 14
#define VOS_SCALE_3 1
#define VOS_SCALE_2 2
#define VOS_SCALE_1 3
#define PWR_D3CR_VOSREADY BIT(13)
struct stm32_rcc_regs {
u32 cr; /* 0x00 Source Control Register */
u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
u32 crrcr; /* 0x08 Clock Recovery RC Register */
u32 reserved1; /* 0x0c reserved */
u32 cfgr; /* 0x10 Clock Configuration Register */
u32 reserved2; /* 0x14 reserved */
u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
u32 reserved3; /* 0x24 reserved */
u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
u32 pllcfgr; /* 0x2c PLLs Configuration Register */
u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
u32 reserved4; /* 0x48 reserved */
u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
u32 reserved5; /* 0x5c reserved */
u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
u32 reserved6; /* 0x6c reserved */
u32 bdcr; /* 0x70 Backup Domain Control Register */
u32 csr; /* 0x74 Clock Control and Status Register */
u32 reserved7; /* 0x78 reserved */
u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
u32 apb2rstr; /* 0x98 APB2 Clock Register */
u32 apb4rstr; /* 0x9c APB4 Clock Register */
u32 gcr; /* 0xa0 Global Control Register */
u32 reserved8; /* 0xa4 reserved */
u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
u32 reserved9[9];/* 0xac to 0xcc reserved */
u32 rsr; /* 0xd0 Reset Status Register */
u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
u32 ahb2enr; /* 0xdc AHB2 Clock Register */
u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
u32 apb3enr; /* 0xe4 APB3 Clock Register */
u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
u32 apb1henr; /* 0xec APB1 high Clock Register */
u32 apb2enr; /* 0xf0 APB2 Clock Register */
u32 apb4enr; /* 0xf4 APB4 Clock Register */
};
#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
struct clk_cfg {
u32 gate_offset;
u8 gate_bit_idx;
const char *name;
};
/*
* the way all these entries are sorted in this array could seem
* unlogical, but we are dependant of kernel DT_bindings,
* where clocks are separate in 2 banks, peripheral clocks and
* kernel clocks.
*/
static const struct clk_cfg clk_map[] = {
{RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */
{RCC_AHB3ENR, 30, "itcm"},
{RCC_AHB3ENR, 29, "dtcm2"},
{RCC_AHB3ENR, 28, "dtcm1"},
{RCC_AHB3ENR, 8, "flitf"},
{RCC_AHB3ENR, 5, "jpgdec"},
{RCC_AHB3ENR, 4, "dma2d"},
{RCC_AHB3ENR, 0, "mdma"},
{RCC_AHB1ENR, 28, "usb2ulpi"},
{RCC_AHB1ENR, 17, "eth1rx"},
{RCC_AHB1ENR, 16, "eth1tx"},
{RCC_AHB1ENR, 15, "eth1mac"},
{RCC_AHB1ENR, 14, "art"},
{RCC_AHB1ENR, 26, "usb1ulpi"},
{RCC_AHB1ENR, 1, "dma2"},
{RCC_AHB1ENR, 0, "dma1"},
{RCC_AHB2ENR, 31, "d2sram3"},
{RCC_AHB2ENR, 30, "d2sram2"},
{RCC_AHB2ENR, 29, "d2sram1"},
{RCC_AHB2ENR, 5, "hash"},
{RCC_AHB2ENR, 4, "crypt"},
{RCC_AHB2ENR, 0, "camitf"},
{RCC_AHB4ENR, 28, "bkpram"},
{RCC_AHB4ENR, 25, "hsem"},
{RCC_AHB4ENR, 21, "bdma"},
{RCC_AHB4ENR, 19, "crc"},
{RCC_AHB4ENR, 10, "gpiok"},
{RCC_AHB4ENR, 9, "gpioj"},
{RCC_AHB4ENR, 8, "gpioi"},
{RCC_AHB4ENR, 7, "gpioh"},
{RCC_AHB4ENR, 6, "gpiog"},
{RCC_AHB4ENR, 5, "gpiof"},
{RCC_AHB4ENR, 4, "gpioe"},
{RCC_AHB4ENR, 3, "gpiod"},
{RCC_AHB4ENR, 2, "gpioc"},
{RCC_AHB4ENR, 1, "gpiob"},
{RCC_AHB4ENR, 0, "gpioa"},
{RCC_APB3ENR, 6, "wwdg1"},
{RCC_APB1LENR, 29, "dac12"},
{RCC_APB1LENR, 11, "wwdg2"},
{RCC_APB1LENR, 8, "tim14"},
{RCC_APB1LENR, 7, "tim13"},
{RCC_APB1LENR, 6, "tim12"},
{RCC_APB1LENR, 5, "tim7"},
{RCC_APB1LENR, 4, "tim6"},
{RCC_APB1LENR, 3, "tim5"},
{RCC_APB1LENR, 2, "tim4"},
{RCC_APB1LENR, 1, "tim3"},
{RCC_APB1LENR, 0, "tim2"},
{RCC_APB1HENR, 5, "mdios"},
{RCC_APB1HENR, 4, "opamp"},
{RCC_APB1HENR, 1, "crs"},
{RCC_APB2ENR, 18, "tim17"},
{RCC_APB2ENR, 17, "tim16"},
{RCC_APB2ENR, 16, "tim15"},
{RCC_APB2ENR, 1, "tim8"},
{RCC_APB2ENR, 0, "tim1"},
{RCC_APB4ENR, 26, "tmpsens"},
{RCC_APB4ENR, 16, "rtcapb"},
{RCC_APB4ENR, 15, "vref"},
{RCC_APB4ENR, 14, "comp12"},
{RCC_APB4ENR, 1, "syscfg"},
{RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */
{RCC_AHB3ENR, 14, "quadspi"},
{RCC_AHB3ENR, 12, "fmc"},
{RCC_AHB1ENR, 27, "usb2otg"},
{RCC_AHB1ENR, 25, "usb1otg"},
{RCC_AHB1ENR, 5, "adc12"},
{RCC_AHB2ENR, 9, "sdmmc2"},
{RCC_AHB2ENR, 6, "rng"},
{RCC_AHB4ENR, 24, "adc3"},
{RCC_APB3ENR, 4, "dsi"},
{RCC_APB3ENR, 3, "ltdc"},
{RCC_APB1LENR, 31, "usart8"},
{RCC_APB1LENR, 30, "usart7"},
{RCC_APB1LENR, 27, "hdmicec"},
{RCC_APB1LENR, 23, "i2c3"},
{RCC_APB1LENR, 22, "i2c2"},
{RCC_APB1LENR, 21, "i2c1"},
{RCC_APB1LENR, 20, "uart5"},
{RCC_APB1LENR, 19, "uart4"},
{RCC_APB1LENR, 18, "usart3"},
{RCC_APB1LENR, 17, "usart2"},
{RCC_APB1LENR, 16, "spdifrx"},
{RCC_APB1LENR, 15, "spi3"},
{RCC_APB1LENR, 14, "spi2"},
{RCC_APB1LENR, 9, "lptim1"},
{RCC_APB1HENR, 8, "fdcan"},
{RCC_APB1HENR, 2, "swp"},
{RCC_APB2ENR, 29, "hrtim"},
{RCC_APB2ENR, 28, "dfsdm1"},
{RCC_APB2ENR, 24, "sai3"},
{RCC_APB2ENR, 23, "sai2"},
{RCC_APB2ENR, 22, "sai1"},
{RCC_APB2ENR, 20, "spi5"},
{RCC_APB2ENR, 13, "spi4"},
{RCC_APB2ENR, 12, "spi1"},
{RCC_APB2ENR, 5, "usart6"},
{RCC_APB2ENR, 4, "usart1"},
{RCC_APB4ENR, 21, "sai4a"},
{RCC_APB4ENR, 21, "sai4b"},
{RCC_APB4ENR, 12, "lptim5"},
{RCC_APB4ENR, 11, "lptim4"},
{RCC_APB4ENR, 10, "lptim3"},
{RCC_APB4ENR, 9, "lptim2"},
{RCC_APB4ENR, 7, "i2c4"},
{RCC_APB4ENR, 5, "spi6"},
{RCC_APB4ENR, 3, "lpuart1"},
};
struct stm32_clk {
struct stm32_rcc_regs *rcc_base;
struct regmap *pwr_regmap;
};
struct pll_psc {
u8 divm;
u16 divn;
u8 divp;
u8 divq;
u8 divr;
};
/*
* OSC_HSE = 25 MHz
* VCO = 500MHz
* pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
*/
struct pll_psc sys_pll_psc = {
.divm = 4,
.divn = 80,
.divp = 2,
.divq = 2,
.divr = 2,
};
int configure_clocks(struct udevice *dev)
{
struct stm32_clk *priv = dev_get_priv(dev);
struct stm32_rcc_regs *regs = priv->rcc_base;
uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
uint32_t pllckselr = 0;
uint32_t pll1divr = 0;
uint32_t pllcfgr = 0;
/* Switch on HSI */
setbits_le32(®s->cr, RCC_CR_HSION);
while (!(readl(®s->cr) & RCC_CR_HSIRDY))
;
/* Reset CFGR, now HSI is the default system clock */
writel(0, ®s->cfgr);
/* Set all kernel domain clock registers to reset value*/
writel(0x0, ®s->d1ccipr);
writel(0x0, ®s->d2ccip1r);
writel(0x0, ®s->d2ccip2r);
/* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
/* Lock supply configuration update */
clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
;
/* disable HSE to configure it */
clrbits_le32(®s->cr, RCC_CR_HSEON);
while ((readl(®s->cr) & RCC_CR_HSERDY))
;
/* clear HSE bypass and set it ON */
clrbits_le32(®s->cr, RCC_CR_HSEBYP);
/* Switch on HSE */
setbits_le32(®s->cr, RCC_CR_HSEON);
while (!(readl(®s->cr) & RCC_CR_HSERDY))
;
/* pll setup, disable it */
clrbits_le32(®s->cr, RCC_CR_PLL1ON);
while ((readl(®s->cr) & RCC_CR_PLL1RDY))
;
/* Select HSE as PLL clock source */
pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
writel(pllckselr, ®s->pllckselr);
pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
pll1divr |= (sys_pll_psc.divn - 1);
writel(pll1divr, ®s->pll1divr);
pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
pllcfgr |= RCC_PLLCFGR_DIVP1EN;
pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
pllcfgr |= RCC_PLLCFGR_DIVR1EN;
writel(pllcfgr, ®s->pllcfgr);
/* pll setup, enable it */
setbits_le32(®s->cr, RCC_CR_PLL1ON);
/* set HPRE (/2) DI clk --> 125MHz */
clrsetbits_le32(®s->d1cfgr, RCC_D1CFGR_HPRE_MASK,
RCC_D1CFGR_HPRE_DIV2);
/* select PLL1 as system clock source (sys_ck)*/
clrsetbits_le32(®s->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
while ((readl(®s->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
;
/* sdram: use pll1_q as fmc_k clk */
clrsetbits_le32(®s->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
FMCSRC_PLL1_Q_CK);
return 0;
}
static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
{
u32 divider;
/* get HSI divider value */
divider = readl(®s->cr) & RCC_CR_HSIDIV_MASK;
divider = divider >> RCC_CR_HSIDIV_SHIFT;
return divider;
};
enum pllsrc {
HSE,
LSE,
HSI,
CSI,
I2S,
TIMER,
PLLSRC_NB,
};
static const char * const pllsrc_name[PLLSRC_NB] = {
[HSE] = "clk-hse",
[LSE] = "clk-lse",
[HSI] = "clk-hsi",
[CSI] = "clk-csi",
[I2S] = "clk-i2s",
[TIMER] = "timer-clk"
};
static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
{
struct clk clk;
struct udevice *fixed_clock_dev = NULL;
u32 divider;
int ret;
const char *name = pllsrc_name[pllsrc];
debug("%s name %s\n", __func__, name);
clk.id = 0;
ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
if (ret) {
pr_err("Can't find clk %s (%d)", name, ret);
return 0;
}
ret = clk_request(fixed_clock_dev, &clk);
if (ret) {
pr_err("Can't request %s clk (%d)", name, ret);
return 0;
}
divider = 0;
if (pllsrc == HSI)
divider = stm32_get_HSI_divider(regs);
debug("%s divider %d rate %ld\n", __func__,
divider, clk_get_rate(&clk));
return clk_get_rate(&clk) >> divider;
};
enum pll1_output {
PLL1_P_CK,
PLL1_Q_CK,
PLL1_R_CK,
};
static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
enum pll1_output output)
{
ulong pllsrc = 0;
u32 divm1, divn1, divp1, divq1, divr1, fracn1;
ulong vco, rate;
/* get the PLLSRC */
switch (readl(®s->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
case RCC_PLLCKSELR_PLLSRC_HSI:
pllsrc = stm32_get_rate(regs, HSI);
break;
case RCC_PLLCKSELR_PLLSRC_CSI:
pllsrc = stm32_get_rate(regs, CSI);
break;
case RCC_PLLCKSELR_PLLSRC_HSE:
pllsrc = stm32_get_rate(regs, HSE);
break;
case RCC_PLLCKSELR_PLLSRC_NO_CLK:
/* shouldn't happen */
pr_err("wrong value for RCC_PLLCKSELR register\n");
pllsrc = 0;
break;
}
/* pllsrc = 0 ? no need to go ahead */
if (!pllsrc)
return pllsrc;
/* get divm1, divp1, divn1 and divr1 */
divm1 = readl(®s->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
divn1 = (readl(®s->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
divp1 = readl(®s->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
divq1 = readl(®s->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
divr1 = readl(®s->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
fracn1 = readl(®s->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
vco = (pllsrc / divm1) * divn1;
rate = (pllsrc * fracn1) / (divm1 * 8192);
debug("%s divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
__func__, divm1, divn1, divp1, divq1, divr1);
debug("%s fracn1 = %d vco = %ld rate = %ld\n",
__func__, fracn1, vco, rate);
switch (output) {
case PLL1_P_CK:
return (vco + rate) / divp1;
break;
case PLL1_Q_CK:
return (vco + rate) / divq1;
break;
case PLL1_R_CK:
return (vco + rate) / divr1;
break;
}
return -EINVAL;
}
static ulong stm32_clk_get_rate(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->rcc_base;
ulong sysclk = 0;
u32 gate_offset;
u32 d1cfgr;
/* prescaler table lookups for clock computation */
u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
u8 source, idx;
/*
* get system clock (sys_ck) source
* can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
*/
source = readl(®s->cfgr) & RCC_CFGR_SW_MASK;
switch (source) {
case RCC_CFGR_SW_PLL1:
sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
break;
case RCC_CFGR_SW_HSE:
sysclk = stm32_get_rate(regs, HSE);
break;
case RCC_CFGR_SW_CSI:
sysclk = stm32_get_rate(regs, CSI);
break;
case RCC_CFGR_SW_HSI:
sysclk = stm32_get_rate(regs, HSI);
break;
}
/* sysclk = 0 ? no need to go ahead */
if (!sysclk)
return sysclk;
debug("%s system clock: source = %d freq = %ld\n",
__func__, source, sysclk);
d1cfgr = readl(®s->d1cfgr);
if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
/* get D1 domain Core prescaler */
idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
RCC_D1CFGR_D1CPRE_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
/* get D1 domain AHB prescaler */
idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
sysclk = sysclk / prescaler_table[idx];
}
gate_offset = clk_map[clk->id].gate_offset;
debug("%s clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
__func__, clk->id, gate_offset, sysclk);
switch (gate_offset) {
case RCC_AHB3ENR:
case RCC_AHB1ENR:
case RCC_AHB2ENR:
case RCC_AHB4ENR:
return sysclk;
break;
case RCC_APB3ENR:
if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
/* get D1 domain APB3 prescaler */
idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
RCC_D1CFGR_D1PPRE_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
debug("%s system clock: freq after APB3 prescaler = %ld\n",
__func__, sysclk);
return sysclk;
break;
case RCC_APB4ENR:
if (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
/* get D3 domain APB4 prescaler */
idx = (d1cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
RCC_D3CFGR_D3PPRE_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
debug("%s system clock: freq after APB4 prescaler = %ld\n",
__func__, sysclk);
return sysclk;
break;
case RCC_APB1LENR:
case RCC_APB1HENR:
if (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED) {
/* get D2 domain APB1 prescaler */
idx = (d1cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER) >>
RCC_D2CFGR_D2PPRE1_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
debug("%s system clock: freq after APB1 prescaler = %ld\n",
__func__, sysclk);
return sysclk;
break;
case RCC_APB2ENR:
if (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED) {
/* get D2 domain APB1 prescaler */
idx = (d1cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER) >>
RCC_D2CFGR_D2PPRE2_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
debug("%s system clock: freq after APB2 prescaler = %ld\n",
__func__, sysclk);
return sysclk;
break;
default:
pr_err("unexpected gate_offset value (0x%x)\n", gate_offset);
return -EINVAL;
break;
}
}
static int stm32_clk_enable(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->rcc_base;
u32 gate_offset;
u32 gate_bit_index;
unsigned long clk_id = clk->id;
gate_offset = clk_map[clk_id].gate_offset;
gate_bit_index = clk_map[clk_id].gate_bit_idx;
debug("%s: clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
__func__, clk->id, gate_offset, gate_bit_index,
clk_map[clk_id].name);
setbits_le32(®s->cr + (gate_offset / 4), BIT(gate_bit_index));
return 0;
}
static int stm32_clk_probe(struct udevice *dev)
{
struct stm32_clk *priv = dev_get_priv(dev);
struct udevice *syscon;
fdt_addr_t addr;
int err;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->rcc_base = (struct stm32_rcc_regs *)addr;
/* get corresponding syscon phandle */
err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
"st,syscfg", &syscon);
if (err) {
pr_err("unable to find syscon device\n");
return err;
}
priv->pwr_regmap = syscon_get_regmap(syscon);
if (!priv->pwr_regmap) {
pr_err("unable to find regmap\n");
return -ENODEV;
}
configure_clocks(dev);
return 0;
}
static int stm32_clk_of_xlate(struct clk *clk,
struct ofnode_phandle_args *args)
{
if (args->args_count != 1) {
debug("Invaild args_count: %d\n", args->args_count);
return -EINVAL;
}
if (args->args_count) {
clk->id = args->args[0];
/*
* this computation convert DT clock index which is used to
* point into 2 separate clock arrays (peripheral and kernel
* clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
* into index to point into only one array where peripheral
* and kernel clocks are consecutive
*/
if (clk->id >= KERN_BANK) {
clk->id -= KERN_BANK;
clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
} else {
clk->id -= PERIF_BANK;
}
} else {
clk->id = 0;
}
debug("%s clk->id %ld\n", __func__, clk->id);
return 0;
}
static struct clk_ops stm32_clk_ops = {
.of_xlate = stm32_clk_of_xlate,
.enable = stm32_clk_enable,
.get_rate = stm32_clk_get_rate,
};
U_BOOT_DRIVER(stm32h7_clk) = {
.name = "stm32h7_rcc_clock",
.id = UCLASS_CLK,
.ops = &stm32_clk_ops,
.probe = stm32_clk_probe,
.priv_auto_alloc_size = sizeof(struct stm32_clk),
.flags = DM_FLAG_PRE_RELOC,
};
|