1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
menu "Generic Driver Options"
config DM
bool "Enable Driver Model"
help
This config option enables Driver Model. This brings in the core
support, including scanning of platform data on start-up. If
CONFIG_OF_CONTROL is enabled, the device tree will be scanned also
when available.
config SPL_DM
bool "Enable Driver Model for SPL"
depends on DM && SPL
help
Enable driver model in SPL. You will need to provide a
suitable malloc() implementation. If you are not using the
full malloc() enabled by CONFIG_SYS_SPL_MALLOC_START,
consider using CONFIG_SYS_MALLOC_SIMPLE. In that case you
must provide CONFIG_SPL_SYS_MALLOC_F_LEN to set the size.
In most cases driver model will only allocate a few uclasses
and devices in SPL, so 1KB should be enable. See
CONFIG_SPL_SYS_MALLOC_F_LEN for more details on how to enable it.
config TPL_DM
bool "Enable Driver Model for TPL"
depends on DM && TPL
help
Enable driver model in TPL. You will need to provide a
suitable malloc() implementation. If you are not using the
full malloc() enabled by CONFIG_SYS_SPL_MALLOC_START,
consider using CONFIG_SYS_MALLOC_SIMPLE. In that case you
must provide CONFIG_SPL_SYS_MALLOC_F_LEN to set the size.
In most cases driver model will only allocate a few uclasses
and devices in SPL, so 1KB should be enough. See
CONFIG_SPL_SYS_MALLOC_F_LEN for more details on how to enable it.
Disable this for very small implementations.
config DM_WARN
bool "Enable warnings in driver model"
depends on DM
default y
help
The dm_warn() function can use up quite a bit of space for its
strings. By default this is disabled for SPL builds to save space.
This will cause dm_warn() to be compiled out - it will do nothing
when called.
config DM_DEBUG
bool "Enable debug messages in driver model core"
depends on DM
help
Say Y here if you want to compile in debug messages in DM core.
config DM_DEVICE_REMOVE
bool "Support device removal"
depends on DM
default y
help
We can save some code space by dropping support for removing a
device.
Note that this may have undesirable results in the USB subsystem as
it causes unplugged devices to linger around in the dm-tree, and it
causes USB host controllers to not be stopped when booting the OS.
config SPL_DM_DEVICE_REMOVE
bool "Support device removal in SPL"
depends on SPL_DM
default n
help
We can save some code space by dropping support for removing a
device. This is not normally required in SPL, so by default this
option is disabled for SPL.
config DM_STDIO
bool "Support stdio registration"
depends on DM
default y
help
Normally serial drivers register with stdio so that they can be used
as normal output devices. In SPL we don't normally use stdio, so
we can omit this feature.
config DM_SEQ_ALIAS
bool "Support numbered aliases in device tree"
depends on DM
default y
help
Most boards will have a '/aliases' node containing the path to
numbered devices (e.g. serial0 = &serial0). This feature can be
disabled if it is not required.
config SPL_DM_SEQ_ALIAS
bool "Support numbered aliases in device tree in SPL"
depends on DM
default n
help
Most boards will have a '/aliases' node containing the path to
numbered devices (e.g. serial0 = &serial0). This feature can be
disabled if it is not required, to save code space in SPL.
config REGMAP
bool "Support register maps"
depends on DM
help
Hardware peripherals tend to have one or more sets of registers
which can be accessed to control the hardware. A register map
models this with a simple read/write interface. It can in principle
support any bus type (I2C, SPI) but so far this only supports
direct memory access.
config SPL_REGMAP
bool "Support register maps in SPL"
depends on SPL_DM
help
Hardware peripherals tend to have one or more sets of registers
which can be accessed to control the hardware. A register map
models this with a simple read/write interface. It can in principle
support any bus type (I2C, SPI) but so far this only supports
direct memory access.
config TPL_REGMAP
bool "Support register maps in TPL"
depends on TPL_DM
help
Hardware peripherals tend to have one or more sets of registers
which can be accessed to control the hardware. A register map
models this with a simple read/write interface. It can in principle
support any bus type (I2C, SPI) but so far this only supports
direct memory access.
config SYSCON
bool "Support system controllers"
depends on REGMAP
help
Many SoCs have a number of system controllers which are dealt with
as a group by a single driver. Some common functionality is provided
by this uclass, including accessing registers via regmap and
assigning a unique number to each.
config SPL_SYSCON
bool "Support system controllers in SPL"
depends on SPL_REGMAP
help
Many SoCs have a number of system controllers which are dealt with
as a group by a single driver. Some common functionality is provided
by this uclass, including accessing registers via regmap and
assigning a unique number to each.
config TPL_SYSCON
bool "Support system controllers in TPL"
depends on TPL_REGMAP
help
Many SoCs have a number of system controllers which are dealt with
as a group by a single driver. Some common functionality is provided
by this uclass, including accessing registers via regmap and
assigning a unique number to each.
config DEVRES
bool "Managed device resources"
depends on DM
help
This option enables the Managed device resources core support.
Device resources managed by the devres framework are automatically
released whether initialization fails half-way or the device gets
detached.
If this option is disabled, devres functions fall back to
non-managed variants. For example, devres_alloc() to kzalloc(),
devm_kmalloc() to kmalloc(), etc.
config DEBUG_DEVRES
bool "Managed device resources debugging functions"
depends on DEVRES
help
If this option is enabled, devres debug messages are printed.
Also, a function is available to dump a list of device resources.
Select this if you are having a problem with devres or want to
debug resource management for a managed device.
If you are unsure about this, Say N here.
config SIMPLE_BUS
bool "Support simple-bus driver"
depends on DM && OF_CONTROL
default y
help
Supports the 'simple-bus' driver, which is used on some systems.
config SPL_SIMPLE_BUS
bool "Support simple-bus driver in SPL"
depends on SPL_DM && SPL_OF_CONTROL
default y
help
Supports the 'simple-bus' driver, which is used on some systems
in SPL.
config OF_TRANSLATE
bool "Translate addresses using fdt_translate_address"
depends on DM && OF_CONTROL
default y
help
If this option is enabled, the reg property will be translated
using the fdt_translate_address() function. This is necessary
on some platforms (e.g. MVEBU) using complex "ranges"
properties in many nodes. As this translation is not handled
correctly in the default simple_bus_translate() function.
If this option is not enabled, simple_bus_translate() will be
used for the address translation. This function is faster and
smaller in size than fdt_translate_address().
config SPL_OF_TRANSLATE
bool "Translate addresses using fdt_translate_address in SPL"
depends on SPL_DM && SPL_OF_CONTROL
default n
help
If this option is enabled, the reg property will be translated
using the fdt_translate_address() function. This is necessary
on some platforms (e.g. MVEBU) using complex "ranges"
properties in many nodes. As this translation is not handled
correctly in the default simple_bus_translate() function.
If this option is not enabled, simple_bus_translate() will be
used for the address translation. This function is faster and
smaller in size than fdt_translate_address().
config OF_ISA_BUS
bool
depends on OF_TRANSLATE
help
Is this option is enabled then support for the ISA bus will
be included for addresses read from DT. This is something that
should be known to be required or not based upon the board
being targeted, and whether or not it makes use of an ISA bus.
The bus is matched based upon its node name equalling "isa". The
busses #address-cells should equal 2, with the first cell being
used to hold flags & flag 0x1 indicating that the address range
should be accessed using I/O port in/out accessors. The second
cell holds the offset into ISA bus address space. The #size-cells
property should equal 1, and of course holds the size of the
address range used by a device.
If this option is not enabled then support for the ISA bus is
not included and any such busses used in DT will be treated as
typical simple-bus compatible busses. This will lead to
mistranslation of device addresses, so ensure that this is
enabled if your board does include an ISA bus.
config DM_DEV_READ_INLINE
bool
default y if !OF_LIVE
endmenu
|