1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
|
/*
* Copyright 2008-2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*
* Based on CAAM driver in drivers/crypto/caam in Linux
*/
#include <common.h>
#include <malloc.h>
#include "fsl_sec.h"
#include "jr.h"
#include "jobdesc.h"
#include "desc_constr.h"
#ifdef CONFIG_FSL_CORENET
#include <asm/fsl_pamu.h>
#endif
#define CIRC_CNT(head, tail, size) (((head) - (tail)) & (size - 1))
#define CIRC_SPACE(head, tail, size) CIRC_CNT((tail), (head) + 1, (size))
uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
0,
#if defined(CONFIG_ARCH_C29X)
CONFIG_SYS_FSL_SEC_IDX_OFFSET,
2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
#endif
};
#define SEC_ADDR(idx) \
((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
#define SEC_JR0_ADDR(idx) \
(SEC_ADDR(idx) + \
(CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
static inline void start_jr0(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
u32 scfgr = sec_in32(&sec->scfgr);
if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
* VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
*/
if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
(!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) &&
(scfgr & SEC_SCFGR_VIRT_EN)))
sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
} else {
/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
}
}
static inline void jr_reset_liodn(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
sec_out32(&sec->jrliodnr[0].ls, 0);
}
static inline void jr_disable_irq(uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
uint32_t jrcfg = sec_in32(®s->jrcfg1);
jrcfg = jrcfg | JR_INTMASK;
sec_out32(®s->jrcfg1, jrcfg);
}
static void jr_initregs(uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
struct jobring *jr = &jr0[sec_idx];
phys_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
phys_addr_t op_base = virt_to_phys((void *)jr->output_ring);
#ifdef CONFIG_PHYS_64BIT
sec_out32(®s->irba_h, ip_base >> 32);
#else
sec_out32(®s->irba_h, 0x0);
#endif
sec_out32(®s->irba_l, (uint32_t)ip_base);
#ifdef CONFIG_PHYS_64BIT
sec_out32(®s->orba_h, op_base >> 32);
#else
sec_out32(®s->orba_h, 0x0);
#endif
sec_out32(®s->orba_l, (uint32_t)op_base);
sec_out32(®s->ors, JR_SIZE);
sec_out32(®s->irs, JR_SIZE);
if (!jr->irq)
jr_disable_irq(sec_idx);
}
static int jr_init(uint8_t sec_idx)
{
struct jobring *jr = &jr0[sec_idx];
memset(jr, 0, sizeof(struct jobring));
jr->jq_id = DEFAULT_JR_ID;
jr->irq = DEFAULT_IRQ;
#ifdef CONFIG_FSL_CORENET
jr->liodn = DEFAULT_JR_LIODN;
#endif
jr->size = JR_SIZE;
jr->input_ring = (dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
JR_SIZE * sizeof(dma_addr_t));
if (!jr->input_ring)
return -1;
jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
ARCH_DMA_MINALIGN);
jr->output_ring =
(struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
if (!jr->output_ring)
return -1;
memset(jr->input_ring, 0, JR_SIZE * sizeof(dma_addr_t));
memset(jr->output_ring, 0, jr->op_size);
start_jr0(sec_idx);
jr_initregs(sec_idx);
return 0;
}
static int jr_sw_cleanup(uint8_t sec_idx)
{
struct jobring *jr = &jr0[sec_idx];
jr->head = 0;
jr->tail = 0;
jr->read_idx = 0;
jr->write_idx = 0;
memset(jr->info, 0, sizeof(jr->info));
memset(jr->input_ring, 0, jr->size * sizeof(dma_addr_t));
memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
return 0;
}
static int jr_hw_reset(uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
uint32_t timeout = 100000;
uint32_t jrint, jrcr;
sec_out32(®s->jrcr, JRCR_RESET);
do {
jrint = sec_in32(®s->jrint);
} while (((jrint & JRINT_ERR_HALT_MASK) ==
JRINT_ERR_HALT_INPROGRESS) && --timeout);
jrint = sec_in32(®s->jrint);
if (((jrint & JRINT_ERR_HALT_MASK) !=
JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
return -1;
timeout = 100000;
sec_out32(®s->jrcr, JRCR_RESET);
do {
jrcr = sec_in32(®s->jrcr);
} while ((jrcr & JRCR_RESET) && --timeout);
if (timeout == 0)
return -1;
return 0;
}
/* -1 --- error, can't enqueue -- no space available */
static int jr_enqueue(uint32_t *desc_addr,
void (*callback)(uint32_t status, void *arg),
void *arg, uint8_t sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
struct jobring *jr = &jr0[sec_idx];
int head = jr->head;
uint32_t desc_word;
int length = desc_len(desc_addr);
int i;
#ifdef CONFIG_PHYS_64BIT
uint32_t *addr_hi, *addr_lo;
#endif
/* The descriptor must be submitted to SEC block as per endianness
* of the SEC Block.
* So, if the endianness of Core and SEC block is different, each word
* of the descriptor will be byte-swapped.
*/
for (i = 0; i < length; i++) {
desc_word = desc_addr[i];
sec_out32((uint32_t *)&desc_addr[i], desc_word);
}
phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);
jr->info[head].desc_phys_addr = desc_phys_addr;
jr->info[head].callback = (void *)callback;
jr->info[head].arg = arg;
jr->info[head].op_done = 0;
unsigned long start = (unsigned long)&jr->info[head] &
~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN((unsigned long)&jr->info[head] +
sizeof(struct jr_info), ARCH_DMA_MINALIGN);
flush_dcache_range(start, end);
#ifdef CONFIG_PHYS_64BIT
/* Write the 64 bit Descriptor address on Input Ring.
* The 32 bit hign and low part of the address will
* depend on endianness of SEC block.
*/
#ifdef CONFIG_SYS_FSL_SEC_LE
addr_lo = (uint32_t *)(&jr->input_ring[head]);
addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
#elif defined(CONFIG_SYS_FSL_SEC_BE)
addr_hi = (uint32_t *)(&jr->input_ring[head]);
addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
#else
/* Write the 32 bit Descriptor address on Input Ring. */
sec_out32(&jr->input_ring[head], desc_phys_addr);
#endif /* ifdef CONFIG_PHYS_64BIT */
start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
end = ALIGN((unsigned long)&jr->input_ring[head] +
sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
flush_dcache_range(start, end);
jr->head = (head + 1) & (jr->size - 1);
/* Invalidate output ring */
start = (unsigned long)jr->output_ring &
~(ARCH_DMA_MINALIGN - 1);
end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
sec_out32(®s->irja, 1);
return 0;
}
static int jr_dequeue(int sec_idx)
{
struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
struct jobring *jr = &jr0[sec_idx];
int head = jr->head;
int tail = jr->tail;
int idx, i, found;
void (*callback)(uint32_t status, void *arg);
void *arg = NULL;
#ifdef CONFIG_PHYS_64BIT
uint32_t *addr_hi, *addr_lo;
#else
uint32_t *addr;
#endif
while (sec_in32(®s->orsf) && CIRC_CNT(jr->head, jr->tail,
jr->size)) {
found = 0;
phys_addr_t op_desc;
#ifdef CONFIG_PHYS_64BIT
/* Read the 64 bit Descriptor address from Output Ring.
* The 32 bit hign and low part of the address will
* depend on endianness of SEC block.
*/
#ifdef CONFIG_SYS_FSL_SEC_LE
addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
#elif defined(CONFIG_SYS_FSL_SEC_BE)
addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
op_desc = ((u64)sec_in32(addr_hi) << 32) |
((u64)sec_in32(addr_lo));
#else
/* Read the 32 bit Descriptor address from Output Ring. */
addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
op_desc = sec_in32(addr);
#endif /* ifdef CONFIG_PHYS_64BIT */
uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
idx = (tail + i) & (jr->size - 1);
if (op_desc == jr->info[idx].desc_phys_addr) {
found = 1;
break;
}
}
/* Error condition if match not found */
if (!found)
return -1;
jr->info[idx].op_done = 1;
callback = (void *)jr->info[idx].callback;
arg = jr->info[idx].arg;
/* When the job on tail idx gets done, increment
* tail till the point where job completed out of oredr has
* been taken into account
*/
if (idx == tail)
do {
tail = (tail + 1) & (jr->size - 1);
} while (jr->info[tail].op_done);
jr->tail = tail;
jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
sec_out32(®s->orjr, 1);
jr->info[idx].op_done = 0;
callback(status, arg);
}
return 0;
}
static void desc_done(uint32_t status, void *arg)
{
struct result *x = arg;
x->status = status;
#ifndef CONFIG_SPL_BUILD
caam_jr_strstatus(status);
#endif
x->done = 1;
}
static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
{
unsigned long long timeval = get_ticks();
unsigned long long timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
struct result op;
int ret = 0;
memset(&op, 0, sizeof(op));
ret = jr_enqueue(desc, desc_done, &op, sec_idx);
if (ret) {
debug("Error in SEC enq\n");
ret = JQ_ENQ_ERR;
goto out;
}
timeval = get_ticks();
timeout = usec2ticks(CONFIG_SEC_DEQ_TIMEOUT);
while (op.done != 1) {
ret = jr_dequeue(sec_idx);
if (ret) {
debug("Error in SEC deq\n");
ret = JQ_DEQ_ERR;
goto out;
}
if ((get_ticks() - timeval) > timeout) {
debug("SEC Dequeue timed out\n");
ret = JQ_DEQ_TO_ERR;
goto out;
}
}
if (op.status) {
debug("Error %x\n", op.status);
ret = op.status;
}
out:
return ret;
}
int run_descriptor_jr(uint32_t *desc)
{
return run_descriptor_jr_idx(desc, 0);
}
static inline int jr_reset_sec(uint8_t sec_idx)
{
if (jr_hw_reset(sec_idx) < 0)
return -1;
/* Clean up the jobring structure maintained by software */
jr_sw_cleanup(sec_idx);
return 0;
}
int jr_reset(void)
{
return jr_reset_sec(0);
}
static inline int sec_reset_idx(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
uint32_t mcfgr = sec_in32(&sec->mcfgr);
uint32_t timeout = 100000;
mcfgr |= MCFGR_SWRST;
sec_out32(&sec->mcfgr, mcfgr);
mcfgr |= MCFGR_DMA_RST;
sec_out32(&sec->mcfgr, mcfgr);
do {
mcfgr = sec_in32(&sec->mcfgr);
} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
if (timeout == 0)
return -1;
timeout = 100000;
do {
mcfgr = sec_in32(&sec->mcfgr);
} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
if (timeout == 0)
return -1;
return 0;
}
int sec_reset(void)
{
return sec_reset_idx(0);
}
#ifndef CONFIG_SPL_BUILD
static int instantiate_rng(uint8_t sec_idx)
{
struct result op;
u32 *desc;
u32 rdsta_val;
int ret = 0;
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
struct rng4tst __iomem *rng =
(struct rng4tst __iomem *)&sec->rng;
memset(&op, 0, sizeof(struct result));
desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
if (!desc) {
printf("cannot allocate RNG init descriptor memory\n");
return -1;
}
inline_cnstr_jobdesc_rng_instantiation(desc);
int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
flush_dcache_range((unsigned long)desc,
(unsigned long)desc + size);
ret = run_descriptor_jr_idx(desc, sec_idx);
if (ret)
printf("RNG: Instantiation failed with error %x\n", ret);
rdsta_val = sec_in32(&rng->rdsta);
if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED))
return -1;
return ret;
}
static u8 get_rng_vid(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
u32 cha_vid = sec_in32(&sec->chavid_ls);
return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
}
/*
* By default, the TRNG runs for 200 clocks per sample;
* 1200 clocks per sample generates better entropy.
*/
static void kick_trng(int ent_delay, uint8_t sec_idx)
{
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
struct rng4tst __iomem *rng =
(struct rng4tst __iomem *)&sec->rng;
u32 val;
/* put RNG4 into program mode */
sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
* length (in system clocks) of each Entropy sample taken
* */
val = sec_in32(&rng->rtsdctl);
val = (val & ~RTSDCTL_ENT_DLY_MASK) |
(ent_delay << RTSDCTL_ENT_DLY_SHIFT);
sec_out32(&rng->rtsdctl, val);
/* min. freq. count, equal to 1/4 of the entropy sample length */
sec_out32(&rng->rtfreqmin, ent_delay >> 2);
/* disable maximum frequency count */
sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
/*
* select raw sampling in both entropy shifter
* and statistical checker
*/
sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
/* put RNG4 into run mode */
sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
}
static int rng_init(uint8_t sec_idx)
{
int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
struct rng4tst __iomem *rng =
(struct rng4tst __iomem *)&sec->rng;
u32 rdsta = sec_in32(&rng->rdsta);
/* Check if RNG state 0 handler is already instantiated */
if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED)
return 0;
do {
/*
* If either of the SH's were instantiated by somebody else
* then it is assumed that the entropy
* parameters are properly set and thus the function
* setting these (kick_trng(...)) is skipped.
* Also, if a handle was instantiated, do not change
* the TRNG parameters.
*/
kick_trng(ent_delay, sec_idx);
ent_delay += 400;
/*
* if instantiate_rng(...) fails, the loop will rerun
* and the kick_trng(...) function will modfiy the
* upper and lower limits of the entropy sampling
* interval, leading to a sucessful initialization of
* the RNG.
*/
ret = instantiate_rng(sec_idx);
} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
if (ret) {
printf("RNG: Failed to instantiate RNG\n");
return ret;
}
/* Enable RDB bit so that RNG works faster */
sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
return ret;
}
#endif
int sec_init_idx(uint8_t sec_idx)
{
ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
uint32_t mcr = sec_in32(&sec->mcfgr);
int ret = 0;
#ifdef CONFIG_FSL_CORENET
uint32_t liodnr;
uint32_t liodn_ns;
uint32_t liodn_s;
#endif
if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
printf("SEC initialization failed\n");
return -1;
}
/*
* Modifying CAAM Read/Write Attributes
* For LS2080A
* For AXI Write - Cacheable, Write Back, Write allocate
* For AXI Read - Cacheable, Read allocate
* Only For LS2080a, to solve CAAM coherency issues
*/
#ifdef CONFIG_ARCH_LS2080A
mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
#else
mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
#endif
#ifdef CONFIG_PHYS_64BIT
mcr |= (1 << MCFGR_PS_SHIFT);
#endif
sec_out32(&sec->mcfgr, mcr);
#ifdef CONFIG_FSL_CORENET
#ifdef CONFIG_SPL_BUILD
/*
* For SPL Build, Set the Liodns in SEC JR0 for
* creating PAMU entries corresponding to these.
* For normal build, these are set in set_liodns().
*/
liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
liodnr = sec_in32(&sec->jrliodnr[0].ls) &
~(JRNSLIODN_MASK | JRSLIODN_MASK);
liodnr = liodnr |
(liodn_ns << JRNSLIODN_SHIFT) |
(liodn_s << JRSLIODN_SHIFT);
sec_out32(&sec->jrliodnr[0].ls, liodnr);
#else
liodnr = sec_in32(&sec->jrliodnr[0].ls);
liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
#endif
#endif
ret = jr_init(sec_idx);
if (ret < 0) {
printf("SEC initialization failed\n");
return -1;
}
#ifdef CONFIG_FSL_CORENET
ret = sec_config_pamu_table(liodn_ns, liodn_s);
if (ret < 0)
return -1;
pamu_enable();
#endif
#ifndef CONFIG_SPL_BUILD
if (get_rng_vid(sec_idx) >= 4) {
if (rng_init(sec_idx) < 0) {
printf("SEC%u: RNG instantiation failed\n", sec_idx);
return -1;
}
printf("SEC%u: RNG instantiated\n", sec_idx);
}
#endif
return ret;
}
int sec_init(void)
{
return sec_init_idx(0);
}
|