1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
|
/*
* Copyright 2008-2014 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* Version 2 as published by the Free Software Foundation.
*/
/*
* Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
* Based on code from spd_sdram.c
* Author: James Yang [at freescale.com]
*/
#include <common.h>
#include <i2c.h>
#include <fsl_ddr_sdram.h>
#include <fsl_ddr.h>
/*
* CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
* of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
* all Power SoCs. But it could be different for ARM SoCs. For example,
* fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
* 0x00_8000_0000 ~ 0x00_ffff_ffff
* 0x80_8000_0000 ~ 0xff_ffff_ffff
*/
#ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
#define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
#endif
#ifdef CONFIG_PPC
#include <asm/fsl_law.h>
void fsl_ddr_set_lawbar(
const common_timing_params_t *memctl_common_params,
unsigned int memctl_interleaved,
unsigned int ctrl_num);
#endif
void fsl_ddr_set_intl3r(const unsigned int granule_size);
#if defined(SPD_EEPROM_ADDRESS) || \
defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
#if (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS,
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS2, /* controller 2 */
[2][0] = SPD_EEPROM_ADDRESS3, /* controller 3 */
};
#elif (CONFIG_NUM_DDR_CONTROLLERS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_NUM_DDR_CONTROLLERS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
[0][0] = SPD_EEPROM_ADDRESS1, /* controller 1 */
[0][1] = SPD_EEPROM_ADDRESS2, /* controller 1 */
[1][0] = SPD_EEPROM_ADDRESS3, /* controller 2 */
[1][1] = SPD_EEPROM_ADDRESS4, /* controller 2 */
[2][0] = SPD_EEPROM_ADDRESS5, /* controller 3 */
[2][1] = SPD_EEPROM_ADDRESS6, /* controller 3 */
};
#endif
#define SPD_SPA0_ADDRESS 0x36
#define SPD_SPA1_ADDRESS 0x37
static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
{
int ret;
#ifdef CONFIG_SYS_FSL_DDR4
uint8_t dummy = 0;
#endif
i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
#ifdef CONFIG_SYS_FSL_DDR4
/*
* DDR4 SPD has 384 to 512 bytes
* To access the lower 256 bytes, we need to set EE page address to 0
* To access the upper 256 bytes, we need to set EE page address to 1
* See Jedec standar No. 21-C for detail
*/
i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
if (!ret) {
i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
ret = i2c_read(i2c_address, 0, 1,
(uchar *)((ulong)spd + 256),
min(256,
(int)sizeof(generic_spd_eeprom_t) - 256));
}
#else
ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
sizeof(generic_spd_eeprom_t));
#endif
if (ret) {
if (i2c_address ==
#ifdef SPD_EEPROM_ADDRESS
SPD_EEPROM_ADDRESS
#elif defined(SPD_EEPROM_ADDRESS1)
SPD_EEPROM_ADDRESS1
#endif
) {
printf("DDR: failed to read SPD from address %u\n",
i2c_address);
} else {
debug("DDR: failed to read SPD from address %u\n",
i2c_address);
}
memset(spd, 0, sizeof(generic_spd_eeprom_t));
}
}
__attribute__((weak, alias("__get_spd")))
void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
/* This function allows boards to update SPD address */
__weak void update_spd_address(unsigned int ctrl_num,
unsigned int slot,
unsigned int *addr)
{
}
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
{
unsigned int i;
unsigned int i2c_address = 0;
if (ctrl_num >= CONFIG_NUM_DDR_CONTROLLERS) {
printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
return;
}
for (i = 0; i < dimm_slots_per_ctrl; i++) {
i2c_address = spd_i2c_addr[ctrl_num][i];
update_spd_address(ctrl_num, i, &i2c_address);
get_spd(&(ctrl_dimms_spd[i]), i2c_address);
}
}
#else
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
{
}
#endif /* SPD_EEPROM_ADDRESSx */
/*
* ASSUMPTIONS:
* - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
* - Same memory data bus width on all controllers
*
* NOTES:
*
* The memory controller and associated documentation use confusing
* terminology when referring to the orgranization of DRAM.
*
* Here is a terminology translation table:
*
* memory controller/documention |industry |this code |signals
* -------------------------------|-----------|-----------|-----------------
* physical bank/bank |rank |rank |chip select (CS)
* logical bank/sub-bank |bank |bank |bank address (BA)
* page/row |row |page |row address
* ??? |column |column |column address
*
* The naming confusion is further exacerbated by the descriptions of the
* memory controller interleaving feature, where accesses are interleaved
* _BETWEEN_ two seperate memory controllers. This is configured only in
* CS0_CONFIG[INTLV_CTL] of each memory controller.
*
* memory controller documentation | number of chip selects
* | per memory controller supported
* --------------------------------|-----------------------------------------
* cache line interleaving | 1 (CS0 only)
* page interleaving | 1 (CS0 only)
* bank interleaving | 1 (CS0 only)
* superbank interleraving | depends on bank (chip select)
* | interleraving [rank interleaving]
* | mode used on every memory controller
*
* Even further confusing is the existence of the interleaving feature
* _WITHIN_ each memory controller. The feature is referred to in
* documentation as chip select interleaving or bank interleaving,
* although it is configured in the DDR_SDRAM_CFG field.
*
* Name of field | documentation name | this code
* -----------------------------|-----------------------|------------------
* DDR_SDRAM_CFG[BA_INTLV_CTL] | Bank (chip select) | rank interleaving
* | interleaving
*/
const char *step_string_tbl[] = {
"STEP_GET_SPD",
"STEP_COMPUTE_DIMM_PARMS",
"STEP_COMPUTE_COMMON_PARMS",
"STEP_GATHER_OPTS",
"STEP_ASSIGN_ADDRESSES",
"STEP_COMPUTE_REGS",
"STEP_PROGRAM_REGS",
"STEP_ALL"
};
const char * step_to_string(unsigned int step) {
unsigned int s = __ilog2(step);
if ((1 << s) != step)
return step_string_tbl[7];
if (s >= ARRAY_SIZE(step_string_tbl)) {
printf("Error for the step in %s\n", __func__);
s = 0;
}
return step_string_tbl[s];
}
static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
unsigned int dbw_cap_adj[])
{
unsigned int i, j;
unsigned long long total_mem, current_mem_base, total_ctlr_mem;
unsigned long long rank_density, ctlr_density = 0;
unsigned int first_ctrl = pinfo->first_ctrl;
unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
/*
* If a reduced data width is requested, but the SPD
* specifies a physically wider device, adjust the
* computed dimm capacities accordingly before
* assigning addresses.
*/
for (i = first_ctrl; i <= last_ctrl; i++) {
unsigned int found = 0;
switch (pinfo->memctl_opts[i].data_bus_width) {
case 2:
/* 16-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
if (!pinfo->dimm_params[i][j].n_ranks)
continue;
dw = pinfo->dimm_params[i][j].primary_sdram_width;
if ((dw == 72 || dw == 64)) {
dbw_cap_adj[i] = 2;
break;
} else if ((dw == 40 || dw == 32)) {
dbw_cap_adj[i] = 1;
break;
}
}
break;
case 1:
/* 32-bit */
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned int dw;
dw = pinfo->dimm_params[i][j].data_width;
if (pinfo->dimm_params[i][j].n_ranks
&& (dw == 72 || dw == 64)) {
/*
* FIXME: can't really do it
* like this because this just
* further reduces the memory
*/
found = 1;
break;
}
}
if (found) {
dbw_cap_adj[i] = 1;
}
break;
case 0:
/* 64-bit */
break;
default:
printf("unexpected data bus width "
"specified controller %u\n", i);
return 1;
}
debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
}
current_mem_base = pinfo->mem_base;
total_mem = 0;
if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
dbw_cap_adj[first_ctrl];
switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
FSL_DDR_CS0_CS1_CS2_CS3) {
case FSL_DDR_CS0_CS1_CS2_CS3:
ctlr_density = 4 * rank_density;
break;
case FSL_DDR_CS0_CS1:
case FSL_DDR_CS0_CS1_AND_CS2_CS3:
ctlr_density = 2 * rank_density;
break;
case FSL_DDR_CS2_CS3:
default:
ctlr_density = rank_density;
break;
}
debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
rank_density, ctlr_density);
for (i = first_ctrl; i <= last_ctrl; i++) {
if (pinfo->memctl_opts[i].memctl_interleaving) {
switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
case FSL_DDR_256B_INTERLEAVING:
case FSL_DDR_CACHE_LINE_INTERLEAVING:
case FSL_DDR_PAGE_INTERLEAVING:
case FSL_DDR_BANK_INTERLEAVING:
case FSL_DDR_SUPERBANK_INTERLEAVING:
total_ctlr_mem = 2 * ctlr_density;
break;
case FSL_DDR_3WAY_1KB_INTERLEAVING:
case FSL_DDR_3WAY_4KB_INTERLEAVING:
case FSL_DDR_3WAY_8KB_INTERLEAVING:
total_ctlr_mem = 3 * ctlr_density;
break;
case FSL_DDR_4WAY_1KB_INTERLEAVING:
case FSL_DDR_4WAY_4KB_INTERLEAVING:
case FSL_DDR_4WAY_8KB_INTERLEAVING:
total_ctlr_mem = 4 * ctlr_density;
break;
default:
panic("Unknown interleaving mode");
}
pinfo->common_timing_params[i].base_address =
current_mem_base;
pinfo->common_timing_params[i].total_mem =
total_ctlr_mem;
total_mem = current_mem_base + total_ctlr_mem;
debug("ctrl %d base 0x%llx\n", i, current_mem_base);
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
} else {
/* when 3rd controller not interleaved */
current_mem_base = total_mem;
total_ctlr_mem = 0;
pinfo->common_timing_params[i].base_address =
current_mem_base;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
unsigned long long cap =
pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
pinfo->dimm_params[i][j].base_address =
current_mem_base;
debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
current_mem_base += cap;
total_ctlr_mem += cap;
}
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
pinfo->common_timing_params[i].total_mem =
total_ctlr_mem;
total_mem += total_ctlr_mem;
}
}
} else {
/*
* Simple linear assignment if memory
* controllers are not interleaved.
*/
for (i = first_ctrl; i <= last_ctrl; i++) {
total_ctlr_mem = 0;
pinfo->common_timing_params[i].base_address =
current_mem_base;
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
/* Compute DIMM base addresses. */
unsigned long long cap =
pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
pinfo->dimm_params[i][j].base_address =
current_mem_base;
debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
current_mem_base += cap;
total_ctlr_mem += cap;
}
debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
pinfo->common_timing_params[i].total_mem =
total_ctlr_mem;
total_mem += total_ctlr_mem;
}
}
debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
return total_mem;
}
/* Use weak function to allow board file to override the address assignment */
__attribute__((weak, alias("__step_assign_addresses")))
unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
unsigned int dbw_cap_adj[]);
unsigned long long
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
unsigned int size_only)
{
unsigned int i, j;
unsigned long long total_mem = 0;
int assert_reset = 0;
unsigned int first_ctrl = pinfo->first_ctrl;
unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
__maybe_unused int retval;
__maybe_unused bool goodspd = false;
__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
common_timing_params_t *timing_params = pinfo->common_timing_params;
if (pinfo->board_need_mem_reset)
assert_reset = pinfo->board_need_mem_reset();
/* data bus width capacity adjust shift amount */
unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];
for (i = first_ctrl; i <= last_ctrl; i++)
dbw_capacity_adjust[i] = 0;
debug("starting at step %u (%s)\n",
start_step, step_to_string(start_step));
switch (start_step) {
case STEP_GET_SPD:
#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
/* STEP 1: Gather all DIMM SPD data */
for (i = first_ctrl; i <= last_ctrl; i++) {
fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
dimm_slots_per_ctrl);
}
case STEP_COMPUTE_DIMM_PARMS:
/* STEP 2: Compute DIMM parameters from SPD data */
for (i = first_ctrl; i <= last_ctrl; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
generic_spd_eeprom_t *spd =
&(pinfo->spd_installed_dimms[i][j]);
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
retval = compute_dimm_parameters(
i, spd, pdimm, j);
#ifdef CONFIG_SYS_DDR_RAW_TIMING
if (!j && retval) {
printf("SPD error on controller %d! "
"Trying fallback to raw timing "
"calculation\n", i);
retval = fsl_ddr_get_dimm_params(pdimm,
i, j);
}
#else
if (retval == 2) {
printf("Error: compute_dimm_parameters"
" non-zero returned FATAL value "
"for memctl=%u dimm=%u\n", i, j);
return 0;
}
#endif
if (retval) {
debug("Warning: compute_dimm_parameters"
" non-zero return value for memctl=%u "
"dimm=%u\n", i, j);
} else {
goodspd = true;
}
}
}
if (!goodspd) {
/*
* No valid SPD found
* Throw an error if this is for main memory, i.e.
* first_ctrl == 0. Otherwise, siliently return 0
* as the memory size.
*/
if (first_ctrl == 0)
printf("Error: No valid SPD detected.\n");
return 0;
}
#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
case STEP_COMPUTE_DIMM_PARMS:
for (i = first_ctrl; i <= last_ctrl; i++) {
for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
dimm_params_t *pdimm =
&(pinfo->dimm_params[i][j]);
fsl_ddr_get_dimm_params(pdimm, i, j);
}
}
debug("Filling dimm parameters from board specific file\n");
#endif
case STEP_COMPUTE_COMMON_PARMS:
/*
* STEP 3: Compute a common set of timing parameters
* suitable for all of the DIMMs on each memory controller
*/
for (i = first_ctrl; i <= last_ctrl; i++) {
debug("Computing lowest common DIMM"
" parameters for memctl=%u\n", i);
compute_lowest_common_dimm_parameters
(i,
pinfo->dimm_params[i],
&timing_params[i],
CONFIG_DIMM_SLOTS_PER_CTLR);
}
case STEP_GATHER_OPTS:
/* STEP 4: Gather configuration requirements from user */
for (i = first_ctrl; i <= last_ctrl; i++) {
debug("Reloading memory controller "
"configuration options for memctl=%u\n", i);
/*
* This "reloads" the memory controller options
* to defaults. If the user "edits" an option,
* next_step points to the step after this,
* which is currently STEP_ASSIGN_ADDRESSES.
*/
populate_memctl_options(
timing_params[i].all_dimms_registered,
&pinfo->memctl_opts[i],
pinfo->dimm_params[i], i);
/*
* For RDIMMs, JEDEC spec requires clocks to be stable
* before reset signal is deasserted. For the boards
* using fixed parameters, this function should be
* be called from board init file.
*/
if (timing_params[i].all_dimms_registered)
assert_reset = 1;
}
if (assert_reset && !size_only) {
if (pinfo->board_mem_reset) {
debug("Asserting mem reset\n");
pinfo->board_mem_reset();
} else {
debug("Asserting mem reset missing\n");
}
}
case STEP_ASSIGN_ADDRESSES:
/* STEP 5: Assign addresses to chip selects */
check_interleaving_options(pinfo);
total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
debug("Total mem %llu assigned\n", total_mem);
case STEP_COMPUTE_REGS:
/* STEP 6: compute controller register values */
debug("FSL Memory ctrl register computation\n");
for (i = first_ctrl; i <= last_ctrl; i++) {
if (timing_params[i].ndimms_present == 0) {
memset(&ddr_reg[i], 0,
sizeof(fsl_ddr_cfg_regs_t));
continue;
}
compute_fsl_memctl_config_regs
(i,
&pinfo->memctl_opts[i],
&ddr_reg[i], &timing_params[i],
pinfo->dimm_params[i],
dbw_capacity_adjust[i],
size_only);
}
default:
break;
}
{
/*
* Compute the amount of memory available just by
* looking for the highest valid CSn_BNDS value.
* This allows us to also experiment with using
* only CS0 when using dual-rank DIMMs.
*/
unsigned int max_end = 0;
for (i = first_ctrl; i <= last_ctrl; i++) {
for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
if (reg->cs[j].config & 0x80000000) {
unsigned int end;
/*
* 0xfffffff is a special value we put
* for unused bnds
*/
if (reg->cs[j].bnds == 0xffffffff)
continue;
end = reg->cs[j].bnds & 0xffff;
if (end > max_end) {
max_end = end;
}
}
}
}
total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
0xFFFFFFULL) - pinfo->mem_base;
}
return total_mem;
}
phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
{
unsigned int i, first_ctrl, last_ctrl;
#ifdef CONFIG_PPC
unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
#endif
unsigned long long total_memory;
int deassert_reset = 0;
first_ctrl = pinfo->first_ctrl;
last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
/* Compute it once normally. */
#ifdef CONFIG_FSL_DDR_INTERACTIVE
if (tstc() && (getc() == 'd')) { /* we got a key press of 'd' */
total_memory = fsl_ddr_interactive(pinfo, 0);
} else if (fsl_ddr_interactive_env_var_exists()) {
total_memory = fsl_ddr_interactive(pinfo, 1);
} else
#endif
total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
/* setup 3-way interleaving before enabling DDRC */
switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
case FSL_DDR_3WAY_1KB_INTERLEAVING:
case FSL_DDR_3WAY_4KB_INTERLEAVING:
case FSL_DDR_3WAY_8KB_INTERLEAVING:
fsl_ddr_set_intl3r(
pinfo->memctl_opts[first_ctrl].
memctl_interleaving_mode);
break;
default:
break;
}
/*
* Program configuration registers.
* JEDEC specs requires clocks to be stable before deasserting reset
* for RDIMMs. Clocks start after chip select is enabled and clock
* control register is set. During step 1, all controllers have their
* registers set but not enabled. Step 2 proceeds after deasserting
* reset through board FPGA or GPIO.
* For non-registered DIMMs, initialization can go through but it is
* also OK to follow the same flow.
*/
if (pinfo->board_need_mem_reset)
deassert_reset = pinfo->board_need_mem_reset();
for (i = first_ctrl; i <= last_ctrl; i++) {
if (pinfo->common_timing_params[i].all_dimms_registered)
deassert_reset = 1;
}
for (i = first_ctrl; i <= last_ctrl; i++) {
debug("Programming controller %u\n", i);
if (pinfo->common_timing_params[i].ndimms_present == 0) {
debug("No dimms present on controller %u; "
"skipping programming\n", i);
continue;
}
/*
* The following call with step = 1 returns before enabling
* the controller. It has to finish with step = 2 later.
*/
fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
deassert_reset ? 1 : 0);
}
if (deassert_reset) {
/* Use board FPGA or GPIO to deassert reset signal */
if (pinfo->board_mem_de_reset) {
debug("Deasserting mem reset\n");
pinfo->board_mem_de_reset();
} else {
debug("Deasserting mem reset missing\n");
}
for (i = first_ctrl; i <= last_ctrl; i++) {
/* Call with step = 2 to continue initialization */
fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
i, 2);
}
}
#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
#endif
#ifdef CONFIG_PPC
/* program LAWs */
for (i = first_ctrl; i <= last_ctrl; i++) {
if (pinfo->memctl_opts[i].memctl_interleaving) {
switch (pinfo->memctl_opts[i].
memctl_interleaving_mode) {
case FSL_DDR_CACHE_LINE_INTERLEAVING:
case FSL_DDR_PAGE_INTERLEAVING:
case FSL_DDR_BANK_INTERLEAVING:
case FSL_DDR_SUPERBANK_INTERLEAVING:
if (i % 2)
break;
if (i == 0) {
law_memctl = LAW_TRGT_IF_DDR_INTRLV;
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
}
#if CONFIG_NUM_DDR_CONTROLLERS > 3
else if (i == 2) {
law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
}
#endif
break;
case FSL_DDR_3WAY_1KB_INTERLEAVING:
case FSL_DDR_3WAY_4KB_INTERLEAVING:
case FSL_DDR_3WAY_8KB_INTERLEAVING:
law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
if (i == 0) {
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
}
break;
case FSL_DDR_4WAY_1KB_INTERLEAVING:
case FSL_DDR_4WAY_4KB_INTERLEAVING:
case FSL_DDR_4WAY_8KB_INTERLEAVING:
law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
if (i == 0)
fsl_ddr_set_lawbar(
&pinfo->common_timing_params[i],
law_memctl, i);
/* place holder for future 4-way interleaving */
break;
default:
break;
}
} else {
switch (i) {
case 0:
law_memctl = LAW_TRGT_IF_DDR_1;
break;
case 1:
law_memctl = LAW_TRGT_IF_DDR_2;
break;
case 2:
law_memctl = LAW_TRGT_IF_DDR_3;
break;
case 3:
law_memctl = LAW_TRGT_IF_DDR_4;
break;
default:
break;
}
fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
law_memctl, i);
}
}
#endif
debug("total_memory by %s = %llu\n", __func__, total_memory);
#if !defined(CONFIG_PHYS_64BIT)
/* Check for 4G or more. Bad. */
if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
puts("Detected ");
print_size(total_memory, " of memory\n");
printf(" This U-Boot only supports < 4G of DDR\n");
printf(" You could rebuild it with CONFIG_PHYS_64BIT\n");
printf(" "); /* re-align to match init_func_ram print */
total_memory = CONFIG_MAX_MEM_MAPPED;
}
#endif
return total_memory;
}
/*
* fsl_ddr_sdram(void) -- this is the main function to be
* called by initdram() in the board file.
*
* It returns amount of memory configured in bytes.
*/
phys_size_t fsl_ddr_sdram(void)
{
fsl_ddr_info_t info;
/* Reset info structure. */
memset(&info, 0, sizeof(fsl_ddr_info_t));
info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
info.first_ctrl = 0;
info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
info.board_need_mem_reset = board_need_mem_reset;
info.board_mem_reset = board_assert_mem_reset;
info.board_mem_de_reset = board_deassert_mem_reset;
return __fsl_ddr_sdram(&info);
}
#ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
phys_size_t fsl_other_ddr_sdram(unsigned long long base,
unsigned int first_ctrl,
unsigned int num_ctrls,
unsigned int dimm_slots_per_ctrl,
int (*board_need_reset)(void),
void (*board_reset)(void),
void (*board_de_reset)(void))
{
fsl_ddr_info_t info;
/* Reset info structure. */
memset(&info, 0, sizeof(fsl_ddr_info_t));
info.mem_base = base;
info.first_ctrl = first_ctrl;
info.num_ctrls = num_ctrls;
info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
info.board_need_mem_reset = board_need_reset;
info.board_mem_reset = board_reset;
info.board_mem_de_reset = board_de_reset;
return __fsl_ddr_sdram(&info);
}
#endif
/*
* fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
* size of the total memory without setting ddr control registers.
*/
phys_size_t
fsl_ddr_sdram_size(void)
{
fsl_ddr_info_t info;
unsigned long long total_memory = 0;
memset(&info, 0 , sizeof(fsl_ddr_info_t));
info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
info.first_ctrl = 0;
info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
info.board_need_mem_reset = NULL;
/* Compute it once normally. */
total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
return total_memory;
}
|