1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2010
* Stefano Babic, DENX Software Engineering, sbabic@denx.de.
*
* (C) Copyright 2002
* Rich Ireland, Enterasys Networks, rireland@enterasys.com.
*
* ispVM functions adapted from Lattice's ispmVMEmbedded code:
* Copyright 2009 Lattice Semiconductor Corp.
*/
#include <common.h>
#include <log.h>
#include <malloc.h>
#include <fpga.h>
#include <lattice.h>
static lattice_board_specific_func *pfns;
static const char *fpga_image;
static unsigned long read_bytes;
static unsigned long bufsize;
static unsigned short expectedCRC;
/*
* External variables and functions declared in ivm_core.c module.
*/
extern unsigned short g_usCalculatedCRC;
extern unsigned short g_usDataType;
extern unsigned char *g_pucIntelBuffer;
extern unsigned char *g_pucHeapMemory;
extern unsigned short g_iHeapCounter;
extern unsigned short g_iHEAPSize;
extern unsigned short g_usIntelDataIndex;
extern unsigned short g_usIntelBufferSize;
extern char *const g_szSupportedVersions[];
/*
* ispVMDelay
*
* Users must implement a delay to observe a_usTimeDelay, where
* bit 15 of the a_usTimeDelay defines the unit.
* 1 = milliseconds
* 0 = microseconds
* Example:
* a_usTimeDelay = 0x0001 = 1 microsecond delay.
* a_usTimeDelay = 0x8001 = 1 millisecond delay.
*
* This subroutine is called upon to provide a delay from 1 millisecond to a few
* hundreds milliseconds each time.
* It is understood that due to a_usTimeDelay is defined as unsigned short, a 16
* bits integer, this function is restricted to produce a delay to 64000
* micro-seconds or 32000 milli-second maximum. The VME file will never pass on
* to this function a delay time > those maximum number. If it needs more than
* those maximum, the VME file will launch the delay function several times to
* realize a larger delay time cummulatively.
* It is perfectly alright to provide a longer delay than required. It is not
* acceptable if the delay is shorter.
*/
void ispVMDelay(unsigned short delay)
{
if (delay & 0x8000)
delay = (delay & ~0x8000) * 1000;
udelay(delay);
}
void writePort(unsigned char a_ucPins, unsigned char a_ucValue)
{
a_ucValue = a_ucValue ? 1 : 0;
switch (a_ucPins) {
case g_ucPinTDI:
pfns->jtag_set_tdi(a_ucValue);
break;
case g_ucPinTCK:
pfns->jtag_set_tck(a_ucValue);
break;
case g_ucPinTMS:
pfns->jtag_set_tms(a_ucValue);
break;
default:
printf("%s: requested unknown pin\n", __func__);
}
}
unsigned char readPort(void)
{
return pfns->jtag_get_tdo();
}
void sclock(void)
{
writePort(g_ucPinTCK, 0x01);
writePort(g_ucPinTCK, 0x00);
}
void calibration(void)
{
/* Apply 2 pulses to TCK. */
writePort(g_ucPinTCK, 0x00);
writePort(g_ucPinTCK, 0x01);
writePort(g_ucPinTCK, 0x00);
writePort(g_ucPinTCK, 0x01);
writePort(g_ucPinTCK, 0x00);
ispVMDelay(0x8001);
/* Apply 2 pulses to TCK. */
writePort(g_ucPinTCK, 0x01);
writePort(g_ucPinTCK, 0x00);
writePort(g_ucPinTCK, 0x01);
writePort(g_ucPinTCK, 0x00);
}
/*
* GetByte
*
* Returns a byte to the caller. The returned byte depends on the
* g_usDataType register. If the HEAP_IN bit is set, then the byte
* is returned from the HEAP. If the LHEAP_IN bit is set, then
* the byte is returned from the intelligent buffer. Otherwise,
* the byte is returned directly from the VME file.
*/
unsigned char GetByte(void)
{
unsigned char ucData;
unsigned int block_size = 4 * 1024;
if (g_usDataType & HEAP_IN) {
/*
* Get data from repeat buffer.
*/
if (g_iHeapCounter > g_iHEAPSize) {
/*
* Data over-run.
*/
return 0xFF;
}
ucData = g_pucHeapMemory[g_iHeapCounter++];
} else if (g_usDataType & LHEAP_IN) {
/*
* Get data from intel buffer.
*/
if (g_usIntelDataIndex >= g_usIntelBufferSize) {
return 0xFF;
}
ucData = g_pucIntelBuffer[g_usIntelDataIndex++];
} else {
if (read_bytes == bufsize) {
return 0xFF;
}
ucData = *fpga_image++;
read_bytes++;
if (!(read_bytes % block_size)) {
printf("Downloading FPGA %ld/%ld completed\r",
read_bytes,
bufsize);
}
if (expectedCRC != 0) {
ispVMCalculateCRC32(ucData);
}
}
return ucData;
}
signed char ispVM(void)
{
char szFileVersion[9] = { 0 };
signed char cRetCode = 0;
signed char cIndex = 0;
signed char cVersionIndex = 0;
unsigned char ucReadByte = 0;
unsigned short crc;
g_pucHeapMemory = NULL;
g_iHeapCounter = 0;
g_iHEAPSize = 0;
g_usIntelDataIndex = 0;
g_usIntelBufferSize = 0;
g_usCalculatedCRC = 0;
expectedCRC = 0;
ucReadByte = GetByte();
switch (ucReadByte) {
case FILE_CRC:
crc = (unsigned char)GetByte();
crc <<= 8;
crc |= GetByte();
expectedCRC = crc;
for (cIndex = 0; cIndex < 8; cIndex++)
szFileVersion[cIndex] = GetByte();
break;
default:
szFileVersion[0] = (signed char) ucReadByte;
for (cIndex = 1; cIndex < 8; cIndex++)
szFileVersion[cIndex] = GetByte();
break;
}
/*
*
* Compare the VME file version against the supported version.
*
*/
for (cVersionIndex = 0; g_szSupportedVersions[cVersionIndex] != 0;
cVersionIndex++) {
for (cIndex = 0; cIndex < 8; cIndex++) {
if (szFileVersion[cIndex] !=
g_szSupportedVersions[cVersionIndex][cIndex]) {
cRetCode = VME_VERSION_FAILURE;
break;
}
cRetCode = 0;
}
if (cRetCode == 0) {
break;
}
}
if (cRetCode < 0) {
return VME_VERSION_FAILURE;
}
printf("VME file checked: starting downloading to FPGA\n");
ispVMStart();
cRetCode = ispVMCode();
ispVMEnd();
ispVMFreeMem();
puts("\n");
if (cRetCode == 0 && expectedCRC != 0 &&
(expectedCRC != g_usCalculatedCRC)) {
printf("Expected CRC: 0x%.4X\n", expectedCRC);
printf("Calculated CRC: 0x%.4X\n", g_usCalculatedCRC);
return VME_CRC_FAILURE;
}
return cRetCode;
}
static int lattice_validate(Lattice_desc *desc, const char *fn)
{
int ret_val = false;
if (desc) {
if ((desc->family > min_lattice_type) &&
(desc->family < max_lattice_type)) {
if ((desc->iface > min_lattice_iface_type) &&
(desc->iface < max_lattice_iface_type)) {
if (desc->size) {
ret_val = true;
} else {
printf("%s: NULL part size\n", fn);
}
} else {
printf("%s: Invalid Interface type, %d\n",
fn, desc->iface);
}
} else {
printf("%s: Invalid family type, %d\n",
fn, desc->family);
}
} else {
printf("%s: NULL descriptor!\n", fn);
}
return ret_val;
}
int lattice_load(Lattice_desc *desc, const void *buf, size_t bsize)
{
int ret_val = FPGA_FAIL;
if (!lattice_validate(desc, (char *)__func__)) {
printf("%s: Invalid device descriptor\n", __func__);
} else {
pfns = desc->iface_fns;
switch (desc->family) {
case Lattice_XP2:
fpga_image = buf;
read_bytes = 0;
bufsize = bsize;
debug("%s: Launching the Lattice ISPVME Loader:"
" addr %p size 0x%lx...\n",
__func__, fpga_image, bufsize);
ret_val = ispVM();
if (ret_val)
printf("%s: error %d downloading FPGA image\n",
__func__, ret_val);
else
puts("FPGA downloaded successfully\n");
break;
default:
printf("%s: Unsupported family type, %d\n",
__func__, desc->family);
}
}
return ret_val;
}
int lattice_dump(Lattice_desc *desc, const void *buf, size_t bsize)
{
puts("Dump not supported for Lattice FPGA\n");
return FPGA_FAIL;
}
int lattice_info(Lattice_desc *desc)
{
int ret_val = FPGA_FAIL;
if (lattice_validate(desc, (char *)__func__)) {
printf("Family: \t");
switch (desc->family) {
case Lattice_XP2:
puts("XP2\n");
break;
/* Add new family types here */
default:
printf("Unknown family type, %d\n", desc->family);
}
puts("Interface type:\t");
switch (desc->iface) {
case lattice_jtag_mode:
puts("JTAG Mode\n");
break;
/* Add new interface types here */
default:
printf("Unsupported interface type, %d\n", desc->iface);
}
printf("Device Size: \t%d bytes\n",
desc->size);
if (desc->iface_fns) {
printf("Device Function Table @ 0x%p\n",
desc->iface_fns);
switch (desc->family) {
case Lattice_XP2:
break;
/* Add new family types here */
default:
break;
}
} else {
puts("No Device Function Table.\n");
}
if (desc->desc)
printf("Model: \t%s\n", desc->desc);
ret_val = FPGA_SUCCESS;
} else {
printf("%s: Invalid device descriptor\n", __func__);
}
return ret_val;
}
|