1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2019 Broadcom.
*
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <sdhci.h>
DECLARE_GLOBAL_DATA_PTR;
struct sdhci_iproc_host {
struct sdhci_host host;
u32 shadow_cmd;
u32 shadow_blk;
};
#define REG_OFFSET_IN_BITS(reg) ((reg) << 3 & 0x18)
static inline struct sdhci_iproc_host *to_iproc(struct sdhci_host *host)
{
return (struct sdhci_iproc_host *)host;
}
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS
static u32 sdhci_iproc_readl(struct sdhci_host *host, int reg)
{
u32 val = readl(host->ioaddr + reg);
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE
printf("%s %d: readl [0x%02x] 0x%08x\n",
host->name, host->index, reg, val);
#endif
return val;
}
static u16 sdhci_iproc_readw(struct sdhci_host *host, int reg)
{
u32 val = sdhci_iproc_readl(host, (reg & ~3));
u16 word = val >> REG_OFFSET_IN_BITS(reg) & 0xffff;
return word;
}
static u8 sdhci_iproc_readb(struct sdhci_host *host, int reg)
{
u32 val = sdhci_iproc_readl(host, (reg & ~3));
u8 byte = val >> REG_OFFSET_IN_BITS(reg) & 0xff;
return byte;
}
static void sdhci_iproc_writel(struct sdhci_host *host, u32 val, int reg)
{
u32 clock = 0;
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS_TRACE
printf("%s %d: writel [0x%02x] 0x%08x\n",
host->name, host->index, reg, val);
#endif
writel(val, host->ioaddr + reg);
if (host->mmc)
clock = host->mmc->clock;
if (clock <= 400000) {
/* Round up to micro-second four SD clock delay */
if (clock)
udelay((4 * 1000000 + clock - 1) / clock);
else
udelay(10);
}
}
/*
* The Arasan has a bugette whereby it may lose the content of successive
* writes to the same register that are within two SD-card clock cycles of
* each other (a clock domain crossing problem). The data
* register does not have this problem, which is just as well - otherwise we'd
* have to nobble the DMA engine too.
*
* This wouldn't be a problem with the code except that we can only write the
* controller with 32-bit writes. So two different 16-bit registers are
* written back to back creates the problem.
*
* In reality, this only happens when SDHCI_BLOCK_SIZE and SDHCI_BLOCK_COUNT
* are written followed by SDHCI_TRANSFER_MODE and SDHCI_COMMAND.
* The BLOCK_SIZE and BLOCK_COUNT are meaningless until a command issued so
* the work around can be further optimized. We can keep shadow values of
* BLOCK_SIZE, BLOCK_COUNT, and TRANSFER_MODE until a COMMAND is issued.
* Then, write the BLOCK_SIZE+BLOCK_COUNT in a single 32-bit write followed
* by the TRANSFER+COMMAND in another 32-bit write.
*/
static void sdhci_iproc_writew(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_iproc_host *iproc_host = to_iproc(host);
u32 word_shift = REG_OFFSET_IN_BITS(reg);
u32 mask = 0xffff << word_shift;
u32 oldval, newval;
if (reg == SDHCI_COMMAND) {
/* Write the block now as we are issuing a command */
if (iproc_host->shadow_blk != 0) {
sdhci_iproc_writel(host, iproc_host->shadow_blk,
SDHCI_BLOCK_SIZE);
iproc_host->shadow_blk = 0;
}
oldval = iproc_host->shadow_cmd;
} else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) {
/* Block size and count are stored in shadow reg */
oldval = iproc_host->shadow_blk;
} else {
/* Read reg, all other registers are not shadowed */
oldval = sdhci_iproc_readl(host, (reg & ~3));
}
newval = (oldval & ~mask) | (val << word_shift);
if (reg == SDHCI_TRANSFER_MODE) {
/* Save the transfer mode until the command is issued */
iproc_host->shadow_cmd = newval;
} else if (reg == SDHCI_BLOCK_SIZE || reg == SDHCI_BLOCK_COUNT) {
/* Save the block info until the command is issued */
iproc_host->shadow_blk = newval;
} else {
/* Command or other regular 32-bit write */
sdhci_iproc_writel(host, newval, reg & ~3);
}
}
static void sdhci_iproc_writeb(struct sdhci_host *host, u8 val, int reg)
{
u32 oldval = sdhci_iproc_readl(host, (reg & ~3));
u32 byte_shift = REG_OFFSET_IN_BITS(reg);
u32 mask = 0xff << byte_shift;
u32 newval = (oldval & ~mask) | (val << byte_shift);
sdhci_iproc_writel(host, newval, reg & ~3);
}
#endif
static void sdhci_iproc_set_ios_post(struct sdhci_host *host)
{
u32 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Reset UHS mode bits */
ctrl &= ~SDHCI_CTRL_UHS_MASK;
if (host->mmc->ddr_mode)
ctrl |= UHS_DDR50_BUS_SPEED;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
static struct sdhci_ops sdhci_platform_ops = {
#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS
.read_l = sdhci_iproc_readl,
.read_w = sdhci_iproc_readw,
.read_b = sdhci_iproc_readb,
.write_l = sdhci_iproc_writel,
.write_w = sdhci_iproc_writew,
.write_b = sdhci_iproc_writeb,
#endif
.set_ios_post = sdhci_iproc_set_ios_post,
};
struct iproc_sdhci_plat {
struct mmc_config cfg;
struct mmc mmc;
};
static int iproc_sdhci_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct iproc_sdhci_plat *plat = dev_get_platdata(dev);
struct sdhci_host *host = dev_get_priv(dev);
struct sdhci_iproc_host *iproc_host;
int node = dev_of_offset(dev);
u32 f_min_max[2];
int ret;
iproc_host = (struct sdhci_iproc_host *)
malloc(sizeof(struct sdhci_iproc_host));
if (!iproc_host) {
printf("%s: sdhci host malloc fail!\n", __func__);
return -ENOMEM;
}
iproc_host->shadow_cmd = 0;
iproc_host->shadow_blk = 0;
host->name = dev->name;
host->ioaddr = (void *)devfdt_get_addr(dev);
host->voltages = MMC_VDD_165_195 |
MMC_VDD_32_33 | MMC_VDD_33_34;
host->quirks = SDHCI_QUIRK_BROKEN_VOLTAGE;
host->host_caps = MMC_MODE_DDR_52MHz;
host->index = fdtdec_get_uint(gd->fdt_blob, node, "index", 0);
host->ops = &sdhci_platform_ops;
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
"clock-freq-min-max", f_min_max, 2);
if (ret) {
printf("sdhci: clock-freq-min-max not found\n");
return ret;
}
host->max_clk = f_min_max[1];
host->bus_width = fdtdec_get_int(gd->fdt_blob,
dev_of_offset(dev), "bus-width", 4);
/* Update host_caps for 8 bit bus width */
if (host->bus_width == 8)
host->host_caps |= MMC_MODE_8BIT;
memcpy(&iproc_host->host, host, sizeof(struct sdhci_host));
ret = sdhci_setup_cfg(&plat->cfg, &iproc_host->host,
f_min_max[1], f_min_max[0]);
if (ret)
return ret;
iproc_host->host.mmc = &plat->mmc;
iproc_host->host.mmc->dev = dev;
iproc_host->host.mmc->priv = &iproc_host->host;
upriv->mmc = iproc_host->host.mmc;
return sdhci_probe(dev);
}
static int iproc_sdhci_bind(struct udevice *dev)
{
struct iproc_sdhci_plat *plat = dev_get_platdata(dev);
return sdhci_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct udevice_id iproc_sdhci_ids[] = {
{ .compatible = "brcm,iproc-sdhci" },
{ }
};
U_BOOT_DRIVER(iproc_sdhci_drv) = {
.name = "iproc_sdhci",
.id = UCLASS_MMC,
.of_match = iproc_sdhci_ids,
.ops = &sdhci_ops,
.bind = iproc_sdhci_bind,
.probe = iproc_sdhci_probe,
.priv_auto_alloc_size = sizeof(struct sdhci_host),
.platdata_auto_alloc_size = sizeof(struct iproc_sdhci_plat),
};
|