summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/denali.c
blob: d1cac063f46f5a755ac624eec98ea477ce230e4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2014       Panasonic Corporation
 * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
 * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
 */

#include <dm.h>
#include <nand.h>
#include <linux/bitfield.h>
#include <linux/dma-direction.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>

#include "denali.h"

static dma_addr_t dma_map_single(void *dev, void *ptr, size_t size,
				 enum dma_data_direction dir)
{
	unsigned long addr = (unsigned long)ptr;

	size = ALIGN(size, ARCH_DMA_MINALIGN);

	if (dir == DMA_FROM_DEVICE)
		invalidate_dcache_range(addr, addr + size);
	else
		flush_dcache_range(addr, addr + size);

	return addr;
}

static void dma_unmap_single(void *dev, dma_addr_t addr, size_t size,
			     enum dma_data_direction dir)
{
	size = ALIGN(size, ARCH_DMA_MINALIGN);

	if (dir != DMA_TO_DEVICE)
		invalidate_dcache_range(addr, addr + size);
}

static int dma_mapping_error(void *dev, dma_addr_t addr)
{
	return 0;
}

#define DENALI_NAND_NAME    "denali-nand"

/* for Indexed Addressing */
#define DENALI_INDEXED_CTRL	0x00
#define DENALI_INDEXED_DATA	0x10

#define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
#define DENALI_MAP11		(3 << 26)	/* direct controller access */

/* MAP11 access cycle type */
#define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
#define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
#define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */

/* MAP10 commands */
#define DENALI_ERASE		0x01

#define DENALI_BANK(denali)	((denali)->active_bank << 24)

#define DENALI_INVALID_BANK	-1
#define DENALI_NR_BANKS		4

/*
 * The bus interface clock, clk_x, is phase aligned with the core clock.  The
 * clk_x is an integral multiple N of the core clk.  The value N is configured
 * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
 * to the largest value to make it work with any possible configuration.
 */
#define DENALI_CLK_X_MULT	6

static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
{
	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
}

/*
 * Direct Addressing - the slave address forms the control information (command
 * type, bank, block, and page address).  The slave data is the actual data to
 * be transferred.  This mode requires 28 bits of address region allocated.
 */
static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
{
	return ioread32(denali->host + addr);
}

static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
				u32 data)
{
	iowrite32(data, denali->host + addr);
}

/*
 * Indexed Addressing - address translation module intervenes in passing the
 * control information.  This mode reduces the required address range.  The
 * control information and transferred data are latched by the registers in
 * the translation module.
 */
static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
{
	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
	return ioread32(denali->host + DENALI_INDEXED_DATA);
}

static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
				 u32 data)
{
	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
}

/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void denali_detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = ioread32(denali->reg + FEATURES);

	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);

	/* the encoding changed from rev 5.0 to 5.1 */
	if (denali->revision < 0x0501)
		denali->max_banks <<= 1;
}

static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
{
	int i;

	for (i = 0; i < DENALI_NR_BANKS; i++)
		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
}

static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
{
	int i;

	for (i = 0; i < DENALI_NR_BANKS; i++)
		iowrite32(0, denali->reg + INTR_EN(i));
	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
}

static void denali_clear_irq(struct denali_nand_info *denali,
			     int bank, uint32_t irq_status)
{
	/* write one to clear bits */
	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
}

static void denali_clear_irq_all(struct denali_nand_info *denali)
{
	int i;

	for (i = 0; i < DENALI_NR_BANKS; i++)
		denali_clear_irq(denali, i, U32_MAX);
}

static void __denali_check_irq(struct denali_nand_info *denali)
{
	uint32_t irq_status;
	int i;

	for (i = 0; i < DENALI_NR_BANKS; i++) {
		irq_status = ioread32(denali->reg + INTR_STATUS(i));
		denali_clear_irq(denali, i, irq_status);

		if (i != denali->active_bank)
			continue;

		denali->irq_status |= irq_status;
	}
}

static void denali_reset_irq(struct denali_nand_info *denali)
{
	denali->irq_status = 0;
	denali->irq_mask = 0;
}

static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
				    uint32_t irq_mask)
{
	unsigned long time_left = 1000000;

	while (time_left) {
		__denali_check_irq(denali);

		if (irq_mask & denali->irq_status)
			return denali->irq_status;
		udelay(1);
		time_left--;
	}

	if (!time_left) {
		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
			irq_mask);
		return 0;
	}

	return denali->irq_status;
}

static uint32_t denali_check_irq(struct denali_nand_info *denali)
{
	__denali_check_irq(denali);

	return denali->irq_status;
}

static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
	int i;

	for (i = 0; i < len; i++)
		buf[i] = denali->host_read(denali, addr);
}

static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
	int i;

	for (i = 0; i < len; i++)
		denali->host_write(denali, addr, buf[i]);
}

static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
	uint16_t *buf16 = (uint16_t *)buf;
	int i;

	for (i = 0; i < len / 2; i++)
		buf16[i] = denali->host_read(denali, addr);
}

static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
			       int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
	const uint16_t *buf16 = (const uint16_t *)buf;
	int i;

	for (i = 0; i < len / 2; i++)
		denali->host_write(denali, addr, buf16[i]);
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	uint8_t byte;

	denali_read_buf(mtd, &byte, 1);

	return byte;
}

static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
{
	denali_write_buf(mtd, &byte, 1);
}

static uint16_t denali_read_word(struct mtd_info *mtd)
{
	uint16_t word;

	denali_read_buf16(mtd, (uint8_t *)&word, 2);

	return word;
}

static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t type;

	if (ctrl & NAND_CLE)
		type = DENALI_MAP11_CMD;
	else if (ctrl & NAND_ALE)
		type = DENALI_MAP11_ADDR;
	else
		return;

	/*
	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
	 * irq_status must be cleared here to catch the R/B# interrupt later.
	 */
	if (ctrl & NAND_CTRL_CHANGE)
		denali_reset_irq(denali);

	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
}

static int denali_dev_ready(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	return !!(denali_check_irq(denali) & INTR__INT_ACT);
}

static int denali_check_erased_page(struct mtd_info *mtd,
				    struct nand_chip *chip, uint8_t *buf,
				    unsigned long uncor_ecc_flags,
				    unsigned int max_bitflips)
{
	uint8_t *ecc_code = chip->buffers->ecccode;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int i, ret, stat;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; i < ecc_steps; i++) {
		if (!(uncor_ecc_flags & BIT(i)))
			continue;

		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
						  ecc_code, ecc_bytes,
						  NULL, 0,
						  chip->ecc.strength);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}

		buf += ecc_size;
		ecc_code += ecc_bytes;
	}

	return max_bitflips;
}

static int denali_hw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int bank = denali->active_bank;
	uint32_t ecc_cor;
	unsigned int max_bitflips;

	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);

	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
		/*
		 * This flag is set when uncorrectable error occurs at least in
		 * one ECC sector.  We can not know "how many sectors", or
		 * "which sector(s)".  We need erase-page check for all sectors.
		 */
		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
		return 0;
	}

	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);

	/*
	 * The register holds the maximum of per-sector corrected bitflips.
	 * This is suitable for the return value of the ->read_page() callback.
	 * Unfortunately, we can not know the total number of corrected bits in
	 * the page.  Increase the stats by max_bitflips. (compromised solution)
	 */
	mtd->ecc_stats.corrected += max_bitflips;

	return max_bitflips;
}

static int denali_sw_ecc_fixup(struct mtd_info *mtd,
			       struct denali_nand_info *denali,
			       unsigned long *uncor_ecc_flags, uint8_t *buf)
{
	unsigned int ecc_size = denali->nand.ecc.size;
	unsigned int bitflips = 0;
	unsigned int max_bitflips = 0;
	uint32_t err_addr, err_cor_info;
	unsigned int err_byte, err_sector, err_device;
	uint8_t err_cor_value;
	unsigned int prev_sector = 0;
	uint32_t irq_status;

	denali_reset_irq(denali);

	do {
		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);

		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
					  err_cor_info);
		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
				       err_cor_info);

		/* reset the bitflip counter when crossing ECC sector */
		if (err_sector != prev_sector)
			bitflips = 0;

		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
			/*
			 * Check later if this is a real ECC error, or
			 * an erased sector.
			 */
			*uncor_ecc_flags |= BIT(err_sector);
		} else if (err_byte < ecc_size) {
			/*
			 * If err_byte is larger than ecc_size, means error
			 * happened in OOB, so we ignore it. It's no need for
			 * us to correct it err_device is represented the NAND
			 * error bits are happened in if there are more than
			 * one NAND connected.
			 */
			int offset;
			unsigned int flips_in_byte;

			offset = (err_sector * ecc_size + err_byte) *
					denali->devs_per_cs + err_device;

			/* correct the ECC error */
			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
			buf[offset] ^= err_cor_value;
			mtd->ecc_stats.corrected += flips_in_byte;
			bitflips += flips_in_byte;

			max_bitflips = max(max_bitflips, bitflips);
		}

		prev_sector = err_sector;
	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));

	/*
	 * Once handle all ECC errors, controller will trigger an
	 * ECC_TRANSACTION_DONE interrupt.
	 */
	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
		return -EIO;

	return max_bitflips;
}

static void denali_setup_dma64(struct denali_nand_info *denali,
			       dma_addr_t dma_addr, int page, int write)
{
	uint32_t mode;
	const int page_count = 1;

	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;

	/* DMA is a three step process */

	/*
	 * 1. setup transfer type, interrupt when complete,
	 *    burst len = 64 bytes, the number of pages
	 */
	denali->host_write(denali, mode,
			   0x01002000 | (64 << 16) | (write << 8) | page_count);

	/* 2. set memory low address */
	denali->host_write(denali, mode, lower_32_bits(dma_addr));

	/* 3. set memory high address */
	denali->host_write(denali, mode, upper_32_bits(dma_addr));
}

static void denali_setup_dma32(struct denali_nand_info *denali,
			       dma_addr_t dma_addr, int page, int write)
{
	uint32_t mode;
	const int page_count = 1;

	mode = DENALI_MAP10 | DENALI_BANK(denali);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	denali->host_write(denali, mode | page,
			   0x2000 | (write << 8) | page_count);

	/* 2. set memory high address bits 23:8 */
	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);

	/* 4. interrupt when complete, burst len = 64 bytes */
	denali->host_write(denali, mode | 0x14000, 0x2400);
}

static int denali_pio_read(struct denali_nand_info *denali, void *buf,
			   size_t size, int page, int raw)
{
	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
	uint32_t *buf32 = (uint32_t *)buf;
	uint32_t irq_status, ecc_err_mask;
	int i;

	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		ecc_err_mask = INTR__ECC_UNCOR_ERR;
	else
		ecc_err_mask = INTR__ECC_ERR;

	denali_reset_irq(denali);

	for (i = 0; i < size / 4; i++)
		*buf32++ = denali->host_read(denali, addr);

	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
	if (!(irq_status & INTR__PAGE_XFER_INC))
		return -EIO;

	if (irq_status & INTR__ERASED_PAGE)
		memset(buf, 0xff, size);

	return irq_status & ecc_err_mask ? -EBADMSG : 0;
}

static int denali_pio_write(struct denali_nand_info *denali,
			    const void *buf, size_t size, int page, int raw)
{
	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
	const uint32_t *buf32 = (uint32_t *)buf;
	uint32_t irq_status;
	int i;

	denali_reset_irq(denali);

	for (i = 0; i < size / 4; i++)
		denali->host_write(denali, addr, *buf32++);

	irq_status = denali_wait_for_irq(denali,
				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
	if (!(irq_status & INTR__PROGRAM_COMP))
		return -EIO;

	return 0;
}

static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
			   size_t size, int page, int raw, int write)
{
	if (write)
		return denali_pio_write(denali, buf, size, page, raw);
	else
		return denali_pio_read(denali, buf, size, page, raw);
}

static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
			   size_t size, int page, int raw, int write)
{
	dma_addr_t dma_addr;
	uint32_t irq_mask, irq_status, ecc_err_mask;
	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
	int ret = 0;

	dma_addr = dma_map_single(denali->dev, buf, size, dir);
	if (dma_mapping_error(denali->dev, dma_addr)) {
		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
		return denali_pio_xfer(denali, buf, size, page, raw, write);
	}

	if (write) {
		/*
		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
		 * when the page program is completed.
		 */
		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
		ecc_err_mask = 0;
	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
		irq_mask = INTR__DMA_CMD_COMP;
		ecc_err_mask = INTR__ECC_UNCOR_ERR;
	} else {
		irq_mask = INTR__DMA_CMD_COMP;
		ecc_err_mask = INTR__ECC_ERR;
	}

	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);

	denali_reset_irq(denali);
	denali->setup_dma(denali, dma_addr, page, write);

	irq_status = denali_wait_for_irq(denali, irq_mask);
	if (!(irq_status & INTR__DMA_CMD_COMP))
		ret = -EIO;
	else if (irq_status & ecc_err_mask)
		ret = -EBADMSG;

	iowrite32(0, denali->reg + DMA_ENABLE);

	dma_unmap_single(denali->dev, dma_addr, size, dir);

	if (irq_status & INTR__ERASED_PAGE)
		memset(buf, 0xff, size);

	return ret;
}

static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
			    size_t size, int page, int raw, int write)
{
	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
		  denali->reg + TRANSFER_SPARE_REG);

	if (denali->dma_avail)
		return denali_dma_xfer(denali, buf, size, page, raw, write);
	else
		return denali_pio_xfer(denali, buf, size, page, raw, write);
}

static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
			    int page, int write)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
	int writesize = mtd->writesize;
	int oobsize = mtd->oobsize;
	uint8_t *bufpoi = chip->oob_poi;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	int oob_skip = denali->oob_skip_bytes;
	size_t size = writesize + oobsize;
	int i, pos, len;

	/* BBM at the beginning of the OOB area */
	chip->cmdfunc(mtd, start_cmd, writesize, page);
	if (write)
		chip->write_buf(mtd, bufpoi, oob_skip);
	else
		chip->read_buf(mtd, bufpoi, oob_skip);
	bufpoi += oob_skip;

	/* OOB ECC */
	for (i = 0; i < ecc_steps; i++) {
		pos = ecc_size + i * (ecc_size + ecc_bytes);
		len = ecc_bytes;

		if (pos >= writesize)
			pos += oob_skip;
		else if (pos + len > writesize)
			len = writesize - pos;

		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
		if (write)
			chip->write_buf(mtd, bufpoi, len);
		else
			chip->read_buf(mtd, bufpoi, len);
		bufpoi += len;
		if (len < ecc_bytes) {
			len = ecc_bytes - len;
			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
			if (write)
				chip->write_buf(mtd, bufpoi, len);
			else
				chip->read_buf(mtd, bufpoi, len);
			bufpoi += len;
		}
	}

	/* OOB free */
	len = oobsize - (bufpoi - chip->oob_poi);
	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
	if (write)
		chip->write_buf(mtd, bufpoi, len);
	else
		chip->read_buf(mtd, bufpoi, len);
}

static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int writesize = mtd->writesize;
	int oobsize = mtd->oobsize;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	void *tmp_buf = denali->buf;
	int oob_skip = denali->oob_skip_bytes;
	size_t size = writesize + oobsize;
	int ret, i, pos, len;

	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
	if (ret)
		return ret;

	/* Arrange the buffer for syndrome payload/ecc layout */
	if (buf) {
		for (i = 0; i < ecc_steps; i++) {
			pos = i * (ecc_size + ecc_bytes);
			len = ecc_size;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(buf, tmp_buf + pos, len);
			buf += len;
			if (len < ecc_size) {
				len = ecc_size - len;
				memcpy(buf, tmp_buf + writesize + oob_skip,
				       len);
				buf += len;
			}
		}
	}

	if (oob_required) {
		uint8_t *oob = chip->oob_poi;

		/* BBM at the beginning of the OOB area */
		memcpy(oob, tmp_buf + writesize, oob_skip);
		oob += oob_skip;

		/* OOB ECC */
		for (i = 0; i < ecc_steps; i++) {
			pos = ecc_size + i * (ecc_size + ecc_bytes);
			len = ecc_bytes;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(oob, tmp_buf + pos, len);
			oob += len;
			if (len < ecc_bytes) {
				len = ecc_bytes - len;
				memcpy(oob, tmp_buf + writesize + oob_skip,
				       len);
				oob += len;
			}
		}

		/* OOB free */
		len = oobsize - (oob - chip->oob_poi);
		memcpy(oob, tmp_buf + size - len, len);
	}

	return 0;
}

static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			   int page)
{
	denali_oob_xfer(mtd, chip, page, 0);

	return 0;
}

static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status;

	denali_reset_irq(denali);

	denali_oob_xfer(mtd, chip, page, 1);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			    uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	unsigned long uncor_ecc_flags = 0;
	int stat = 0;
	int ret;

	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
	if (ret && ret != -EBADMSG)
		return ret;

	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
	else if (ret == -EBADMSG)
		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);

	if (stat < 0)
		return stat;

	if (uncor_ecc_flags) {
		ret = denali_read_oob(mtd, chip, page);
		if (ret)
			return ret;

		stat = denali_check_erased_page(mtd, chip, buf,
						uncor_ecc_flags, stat);
	}

	return stat;
}

static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				 const uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int writesize = mtd->writesize;
	int oobsize = mtd->oobsize;
	int ecc_steps = chip->ecc.steps;
	int ecc_size = chip->ecc.size;
	int ecc_bytes = chip->ecc.bytes;
	void *tmp_buf = denali->buf;
	int oob_skip = denali->oob_skip_bytes;
	size_t size = writesize + oobsize;
	int i, pos, len;

	/*
	 * Fill the buffer with 0xff first except the full page transfer.
	 * This simplifies the logic.
	 */
	if (!buf || !oob_required)
		memset(tmp_buf, 0xff, size);

	/* Arrange the buffer for syndrome payload/ecc layout */
	if (buf) {
		for (i = 0; i < ecc_steps; i++) {
			pos = i * (ecc_size + ecc_bytes);
			len = ecc_size;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(tmp_buf + pos, buf, len);
			buf += len;
			if (len < ecc_size) {
				len = ecc_size - len;
				memcpy(tmp_buf + writesize + oob_skip, buf,
				       len);
				buf += len;
			}
		}
	}

	if (oob_required) {
		const uint8_t *oob = chip->oob_poi;

		/* BBM at the beginning of the OOB area */
		memcpy(tmp_buf + writesize, oob, oob_skip);
		oob += oob_skip;

		/* OOB ECC */
		for (i = 0; i < ecc_steps; i++) {
			pos = ecc_size + i * (ecc_size + ecc_bytes);
			len = ecc_bytes;

			if (pos >= writesize)
				pos += oob_skip;
			else if (pos + len > writesize)
				len = writesize - pos;

			memcpy(tmp_buf + pos, oob, len);
			oob += len;
			if (len < ecc_bytes) {
				len = ecc_bytes - len;
				memcpy(tmp_buf + writesize + oob_skip, oob,
				       len);
				oob += len;
			}
		}

		/* OOB free */
		len = oobsize - (oob - chip->oob_poi);
		memcpy(tmp_buf + size - len, oob, len);
	}

	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
}

static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
			     const uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
				page, 0, 1);
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	denali->active_bank = chip;
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status;

	/* R/B# pin transitioned from low to high? */
	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);

	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
}

static int denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status;

	denali_reset_irq(denali);

	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
			   DENALI_ERASE);

	/* wait for erase to complete or failure to occur */
	irq_status = denali_wait_for_irq(denali,
					 INTR__ERASE_COMP | INTR__ERASE_FAIL);

	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
}

static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
				       const struct nand_data_interface *conf)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	const struct nand_sdr_timings *timings;
	unsigned long t_clk;
	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
	int addr_2_data_mask;
	uint32_t tmp;

	timings = nand_get_sdr_timings(conf);
	if (IS_ERR(timings))
		return PTR_ERR(timings);

	/* clk_x period in picoseconds */
	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
	if (!t_clk)
		return -EINVAL;

	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	/* tREA -> ACC_CLKS */
	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);

	tmp = ioread32(denali->reg + ACC_CLKS);
	tmp &= ~ACC_CLKS__VALUE;
	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
	iowrite32(tmp, denali->reg + ACC_CLKS);

	/* tRWH -> RE_2_WE */
	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);

	tmp = ioread32(denali->reg + RE_2_WE);
	tmp &= ~RE_2_WE__VALUE;
	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
	iowrite32(tmp, denali->reg + RE_2_WE);

	/* tRHZ -> RE_2_RE */
	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);

	tmp = ioread32(denali->reg + RE_2_RE);
	tmp &= ~RE_2_RE__VALUE;
	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
	iowrite32(tmp, denali->reg + RE_2_RE);

	/*
	 * tCCS, tWHR -> WE_2_RE
	 *
	 * With WE_2_RE properly set, the Denali controller automatically takes
	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
	 */
	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
			       t_clk);
	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);

	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);

	/* tADL -> ADDR_2_DATA */

	/* for older versions, ADDR_2_DATA is only 6 bit wide */
	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
	if (denali->revision < 0x0501)
		addr_2_data_mask >>= 1;

	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);

	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);

	/* tREH, tWH -> RDWR_EN_HI_CNT */
	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
				  t_clk);
	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);

	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
	tmp &= ~RDWR_EN_HI_CNT__VALUE;
	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);

	/* tRP, tWP -> RDWR_EN_LO_CNT */
	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
				  t_clk);
	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
				     t_clk);
	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);

	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
	tmp &= ~RDWR_EN_LO_CNT__VALUE;
	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);

	/* tCS, tCEA -> CS_SETUP_CNT */
	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
			0);
	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);

	tmp = ioread32(denali->reg + CS_SETUP_CNT);
	tmp &= ~CS_SETUP_CNT__VALUE;
	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
	iowrite32(tmp, denali->reg + CS_SETUP_CNT);

	return 0;
}

static void denali_reset_banks(struct denali_nand_info *denali)
{
	u32 irq_status;
	int i;

	for (i = 0; i < denali->max_banks; i++) {
		denali->active_bank = i;

		denali_reset_irq(denali);

		iowrite32(DEVICE_RESET__BANK(i),
			  denali->reg + DEVICE_RESET);

		irq_status = denali_wait_for_irq(denali,
			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
		if (!(irq_status & INTR__INT_ACT))
			break;
	}

	dev_dbg(denali->dev, "%d chips connected\n", i);
	denali->max_banks = i;
}

static void denali_hw_init(struct denali_nand_info *denali)
{
	/*
	 * The REVISION register may not be reliable.  Platforms are allowed to
	 * override it.
	 */
	if (!denali->revision)
		denali->revision = swab16(ioread32(denali->reg + REVISION));

	/*
	 * tell driver how many bit controller will skip before writing
	 * ECC code in OOB. This is normally used for bad block marker
	 */
	denali->oob_skip_bytes = CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES;
	iowrite32(denali->oob_skip_bytes, denali->reg + SPARE_AREA_SKIP_BYTES);
	denali_detect_max_banks(denali);
	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);

	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
}

int denali_calc_ecc_bytes(int step_size, int strength)
{
	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
}
EXPORT_SYMBOL(denali_calc_ecc_bytes);

static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
			    struct denali_nand_info *denali)
{
	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
	int ret;

	/*
	 * If .size and .strength are already set (usually by DT),
	 * check if they are supported by this controller.
	 */
	if (chip->ecc.size && chip->ecc.strength)
		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);

	/*
	 * We want .size and .strength closest to the chip's requirement
	 * unless NAND_ECC_MAXIMIZE is requested.
	 */
	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
		if (!ret)
			return 0;
	}

	/* Max ECC strength is the last thing we can do */
	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
}

static struct nand_ecclayout nand_oob;

static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
				struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = denali->oob_skip_bytes;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int denali_ooblayout_free(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
	oobregion->length = mtd->oobsize - oobregion->offset;

	return 0;
}

static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
	.ecc = denali_ooblayout_ecc,
	.free = denali_ooblayout_free,
};

static int denali_multidev_fixup(struct denali_nand_info *denali)
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * Support for multi device:
	 * When the IP configuration is x16 capable and two x8 chips are
	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
	 * In this case, the core framework knows nothing about this fact,
	 * so we should tell it the _logical_ pagesize and anything necessary.
	 */
	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);

	/*
	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
	 */
	if (denali->devs_per_cs == 0) {
		denali->devs_per_cs = 1;
		iowrite32(1, denali->reg + DEVICES_CONNECTED);
	}

	if (denali->devs_per_cs == 1)
		return 0;

	if (denali->devs_per_cs != 2) {
		dev_err(denali->dev, "unsupported number of devices %d\n",
			denali->devs_per_cs);
		return -EINVAL;
	}

	/* 2 chips in parallel */
	mtd->size <<= 1;
	mtd->erasesize <<= 1;
	mtd->writesize <<= 1;
	mtd->oobsize <<= 1;
	chip->chipsize <<= 1;
	chip->page_shift += 1;
	chip->phys_erase_shift += 1;
	chip->bbt_erase_shift += 1;
	chip->chip_shift += 1;
	chip->pagemask <<= 1;
	chip->ecc.size <<= 1;
	chip->ecc.bytes <<= 1;
	chip->ecc.strength <<= 1;
	denali->oob_skip_bytes <<= 1;

	return 0;
}

int denali_init(struct denali_nand_info *denali)
{
	struct nand_chip *chip = &denali->nand;
	struct mtd_info *mtd = nand_to_mtd(chip);
	u32 features = ioread32(denali->reg + FEATURES);
	int ret;

	denali_hw_init(denali);

	denali_clear_irq_all(denali);

	denali_reset_banks(denali);

	denali->active_bank = DENALI_INVALID_BANK;

	chip->flash_node = dev_of_offset(denali->dev);
	/* Fallback to the default name if DT did not give "label" property */
	if (!mtd->name)
		mtd->name = "denali-nand";

	chip->select_chip = denali_select_chip;
	chip->read_byte = denali_read_byte;
	chip->write_byte = denali_write_byte;
	chip->read_word = denali_read_word;
	chip->cmd_ctrl = denali_cmd_ctrl;
	chip->dev_ready = denali_dev_ready;
	chip->waitfunc = denali_waitfunc;

	if (features & FEATURES__INDEX_ADDR) {
		denali->host_read = denali_indexed_read;
		denali->host_write = denali_indexed_write;
	} else {
		denali->host_read = denali_direct_read;
		denali->host_write = denali_direct_write;
	}

	/* clk rate info is needed for setup_data_interface */
	if (denali->clk_x_rate)
		chip->setup_data_interface = denali_setup_data_interface;

	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
	if (ret)
		return ret;

	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
		denali->dma_avail = 1;

	if (denali->dma_avail) {
		chip->buf_align = ARCH_DMA_MINALIGN;
		if (denali->caps & DENALI_CAP_DMA_64BIT)
			denali->setup_dma = denali_setup_dma64;
		else
			denali->setup_dma = denali_setup_dma32;
	} else {
		chip->buf_align = 4;
	}

	chip->options |= NAND_USE_BOUNCE_BUFFER;
	chip->bbt_options |= NAND_BBT_USE_FLASH;
	chip->bbt_options |= NAND_BBT_NO_OOB;
	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;

	/* no subpage writes on denali */
	chip->options |= NAND_NO_SUBPAGE_WRITE;

	ret = denali_ecc_setup(mtd, chip, denali);
	if (ret) {
		dev_err(denali->dev, "Failed to setup ECC settings.\n");
		return ret;
	}

	dev_dbg(denali->dev,
		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);

	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
		  denali->reg + ECC_CORRECTION);
	iowrite32(mtd->erasesize / mtd->writesize,
		  denali->reg + PAGES_PER_BLOCK);
	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
		  denali->reg + DEVICE_WIDTH);
	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
		  denali->reg + TWO_ROW_ADDR_CYCLES);
	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);

	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
	iowrite32(mtd->writesize / chip->ecc.size,
		  denali->reg + CFG_NUM_DATA_BLOCKS);

	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);

	nand_oob.eccbytes = denali->nand.ecc.bytes;
	denali->nand.ecc.layout = &nand_oob;

	if (chip->options & NAND_BUSWIDTH_16) {
		chip->read_buf = denali_read_buf16;
		chip->write_buf = denali_write_buf16;
	} else {
		chip->read_buf = denali_read_buf;
		chip->write_buf = denali_write_buf;
	}
	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
	chip->ecc.read_page = denali_read_page;
	chip->ecc.read_page_raw = denali_read_page_raw;
	chip->ecc.write_page = denali_write_page;
	chip->ecc.write_page_raw = denali_write_page_raw;
	chip->ecc.read_oob = denali_read_oob;
	chip->ecc.write_oob = denali_write_oob;
	chip->erase = denali_erase;

	ret = denali_multidev_fixup(denali);
	if (ret)
		return ret;

	/*
	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
	 * use devm_kmalloc() because the memory allocated by devm_ does not
	 * guarantee DMA-safe alignment.
	 */
	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
	if (!denali->buf)
		return -ENOMEM;

	ret = nand_scan_tail(mtd);
	if (ret)
		goto free_buf;

	ret = nand_register(0, mtd);
	if (ret) {
		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
		goto free_buf;
	}
	return 0;

free_buf:
	kfree(denali->buf);

	return ret;
}