summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/fsl_ifc_nand.c
blob: b13d8a9303a9bea0410c0d9e039926366d5ab7c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
/* Integrated Flash Controller NAND Machine Driver
 *
 * Copyright (c) 2012 Freescale Semiconductor, Inc
 *
 * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <common.h>
#include <malloc.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>

#include <asm/io.h>
#include <asm/errno.h>
#include <asm/fsl_ifc.h>

#define FSL_IFC_V1_1_0	0x01010000
#define MAX_BANKS	4
#define ERR_BYTE	0xFF /* Value returned for read bytes
				when read failed */
#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC
				NAND Machine */

struct fsl_ifc_ctrl;

/* mtd information per set */
struct fsl_ifc_mtd {
	struct mtd_info mtd;
	struct nand_chip chip;
	struct fsl_ifc_ctrl *ctrl;

	struct device *dev;
	int bank;               /* Chip select bank number                */
	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
	u8 __iomem *vbase;      /* Chip select base virtual address       */
};

/* overview of the fsl ifc controller */
struct fsl_ifc_ctrl {
	struct nand_hw_control controller;
	struct fsl_ifc_mtd *chips[MAX_BANKS];

	/* device info */
	struct fsl_ifc *regs;
	uint8_t __iomem *addr;   /* Address of assigned IFC buffer        */
	unsigned int cs_nand;    /* On which chipsel NAND is connected	  */
	unsigned int page;       /* Last page written to / read from      */
	unsigned int read_bytes; /* Number of bytes read during command   */
	unsigned int column;     /* Saved column from SEQIN               */
	unsigned int index;      /* Pointer to next byte to 'read'        */
	unsigned int status;     /* status read from NEESR after last op  */
	unsigned int oob;        /* Non zero if operating on OOB data     */
	unsigned int eccread;    /* Non zero for a full-page ECC read     */
};

static struct fsl_ifc_ctrl *ifc_ctrl;

/* 512-byte page with 4-bit ECC, 8-bit */
static struct nand_ecclayout oob_512_8bit_ecc4 = {
	.eccbytes = 8,
	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
	.oobfree = { {0, 5}, {6, 2} },
};

/* 512-byte page with 4-bit ECC, 16-bit */
static struct nand_ecclayout oob_512_16bit_ecc4 = {
	.eccbytes = 8,
	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15},
	.oobfree = { {2, 6}, },
};

/* 2048-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_2048_ecc4 = {
	.eccbytes = 32,
	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		16, 17, 18, 19, 20, 21, 22, 23,
		24, 25, 26, 27, 28, 29, 30, 31,
		32, 33, 34, 35, 36, 37, 38, 39,
	},
	.oobfree = { {2, 6}, {40, 24} },
};

/* 4096-byte page size with 4-bit ECC */
static struct nand_ecclayout oob_4096_ecc4 = {
	.eccbytes = 64,
	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		16, 17, 18, 19, 20, 21, 22, 23,
		24, 25, 26, 27, 28, 29, 30, 31,
		32, 33, 34, 35, 36, 37, 38, 39,
		40, 41, 42, 43, 44, 45, 46, 47,
		48, 49, 50, 51, 52, 53, 54, 55,
		56, 57, 58, 59, 60, 61, 62, 63,
		64, 65, 66, 67, 68, 69, 70, 71,
	},
	.oobfree = { {2, 6}, {72, 56} },
};

/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */
static struct nand_ecclayout oob_4096_ecc8 = {
	.eccbytes = 128,
	.eccpos = {
		8, 9, 10, 11, 12, 13, 14, 15,
		16, 17, 18, 19, 20, 21, 22, 23,
		24, 25, 26, 27, 28, 29, 30, 31,
		32, 33, 34, 35, 36, 37, 38, 39,
		40, 41, 42, 43, 44, 45, 46, 47,
		48, 49, 50, 51, 52, 53, 54, 55,
		56, 57, 58, 59, 60, 61, 62, 63,
		64, 65, 66, 67, 68, 69, 70, 71,
		72, 73, 74, 75, 76, 77, 78, 79,
		80, 81, 82, 83, 84, 85, 86, 87,
		88, 89, 90, 91, 92, 93, 94, 95,
		96, 97, 98, 99, 100, 101, 102, 103,
		104, 105, 106, 107, 108, 109, 110, 111,
		112, 113, 114, 115, 116, 117, 118, 119,
		120, 121, 122, 123, 124, 125, 126, 127,
		128, 129, 130, 131, 132, 133, 134, 135,
	},
	.oobfree = { {2, 6}, {136, 82} },
};


/*
 * Generic flash bbt descriptors
 */
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	2, /* 0 on 8-bit small page */
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	2, /* 0 on 8-bit small page */
	.len = 4,
	.veroffs = 6,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

/*
 * Set up the IFC hardware block and page address fields, and the ifc nand
 * structure addr field to point to the correct IFC buffer in memory
 */
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc *ifc = ctrl->regs;
	int buf_num;

	ctrl->page = page_addr;

	/* Program ROW0/COL0 */
	out_be32(&ifc->ifc_nand.row0, page_addr);
	out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column);

	buf_num = page_addr & priv->bufnum_mask;

	ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
	ctrl->index = column;

	/* for OOB data point to the second half of the buffer */
	if (oob)
		ctrl->index += mtd->writesize;
}

static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
		    unsigned int bufnum)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
	u32 __iomem *main = (u32 *)addr;
	u8 __iomem *oob = addr + mtd->writesize;
	int i;

	for (i = 0; i < mtd->writesize / 4; i++) {
		if (__raw_readl(&main[i]) != 0xffffffff)
			return 0;
	}

	for (i = 0; i < chip->ecc.layout->eccbytes; i++) {
		int pos = chip->ecc.layout->eccpos[i];

		if (__raw_readb(&oob[pos]) != 0xff)
			return 0;
	}

	return 1;
}

/* returns nonzero if entire page is blank */
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
			  u32 *eccstat, unsigned int bufnum)
{
	u32 reg = eccstat[bufnum / 4];
	int errors;

	errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;

	return errors;
}

/*
 * execute IFC NAND command and wait for it to complete
 */
static int fsl_ifc_run_command(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc *ifc = ctrl->regs;
	long long end_tick;
	u32 eccstat[4];
	int i;

	/* set the chip select for NAND Transaction */
	out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);

	/* start read/write seq */
	out_be32(&ifc->ifc_nand.nandseq_strt,
		 IFC_NAND_SEQ_STRT_FIR_STRT);

	/* wait for NAND Machine complete flag or timeout */
	end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks();

	while (end_tick > get_ticks()) {
		ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat);

		if (ctrl->status & IFC_NAND_EVTER_STAT_OPC)
			break;
	}

	out_be32(&ifc->ifc_nand.nand_evter_stat, ctrl->status);

	if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER)
		printf("%s: Flash Time Out Error\n", __func__);
	if (ctrl->status & IFC_NAND_EVTER_STAT_WPER)
		printf("%s: Write Protect Error\n", __func__);

	if (ctrl->eccread) {
		int errors;
		int bufnum = ctrl->page & priv->bufnum_mask;
		int sector = bufnum * chip->ecc.steps;
		int sector_end = sector + chip->ecc.steps - 1;

		for (i = sector / 4; i <= sector_end / 4; i++)
			eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]);

		for (i = sector; i <= sector_end; i++) {
			errors = check_read_ecc(mtd, ctrl, eccstat, i);

			if (errors == 15) {
				/*
				 * Uncorrectable error.
				 * OK only if the whole page is blank.
				 *
				 * We disable ECCER reporting due to erratum
				 * IFC-A002770 -- so report it now if we
				 * see an uncorrectable error in ECCSTAT.
				 */
				if (!is_blank(mtd, ctrl, bufnum))
					ctrl->status |=
						IFC_NAND_EVTER_STAT_ECCER;
				break;
			}

			mtd->ecc_stats.corrected += errors;
		}

		ctrl->eccread = 0;
	}

	/* returns 0 on success otherwise non-zero) */
	return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
}

static void fsl_ifc_do_read(struct nand_chip *chip,
			    int oob,
			    struct mtd_info *mtd)
{
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc *ifc = ctrl->regs;

	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
	if (mtd->writesize > 512) {
		out_be32(&ifc->ifc_nand.nand_fir0,
			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
		out_be32(&ifc->ifc_nand.nand_fir1, 0x0);

		out_be32(&ifc->ifc_nand.nand_fcr0,
			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
	} else {
		out_be32(&ifc->ifc_nand.nand_fir0,
			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));

		if (oob)
			out_be32(&ifc->ifc_nand.nand_fcr0,
				 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
		else
			out_be32(&ifc->ifc_nand.nand_fcr0,
				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
	}
}

/* cmdfunc send commands to the IFC NAND Machine */
static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
			     int column, int page_addr)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc *ifc = ctrl->regs;

	/* clear the read buffer */
	ctrl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		ctrl->index = 0;

	switch (command) {
	/* READ0 read the entire buffer to use hardware ECC. */
	case NAND_CMD_READ0: {
		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
		set_addr(mtd, 0, page_addr, 0);

		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
		ctrl->index += column;

		if (chip->ecc.mode == NAND_ECC_HW)
			ctrl->eccread = 1;

		fsl_ifc_do_read(chip, 0, mtd);
		fsl_ifc_run_command(mtd);
		return;
	}

	/* READOOB reads only the OOB because no ECC is performed. */
	case NAND_CMD_READOOB:
		out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column);
		set_addr(mtd, column, page_addr, 1);

		ctrl->read_bytes = mtd->writesize + mtd->oobsize;

		fsl_ifc_do_read(chip, 1, mtd);
		fsl_ifc_run_command(mtd);

		return;

	/* READID must read all possible bytes while CEB is active */
	case NAND_CMD_READID:
	case NAND_CMD_PARAM: {
		int timing = IFC_FIR_OP_RB;
		if (command == NAND_CMD_PARAM)
			timing = IFC_FIR_OP_RBCD;

		out_be32(&ifc->ifc_nand.nand_fir0,
				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				(IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
				(timing << IFC_NAND_FIR0_OP2_SHIFT));
		out_be32(&ifc->ifc_nand.nand_fcr0,
				command << IFC_NAND_FCR0_CMD0_SHIFT);
		out_be32(&ifc->ifc_nand.row3, column);

		/*
		 * although currently it's 8 bytes for READID, we always read
		 * the maximum 256 bytes(for PARAM)
		 */
		out_be32(&ifc->ifc_nand.nand_fbcr, 256);
		ctrl->read_bytes = 256;

		set_addr(mtd, 0, 0, 0);
		fsl_ifc_run_command(mtd);
		return;
	}

	/* ERASE1 stores the block and page address */
	case NAND_CMD_ERASE1:
		set_addr(mtd, 0, page_addr, 0);
		return;

	/* ERASE2 uses the block and page address from ERASE1 */
	case NAND_CMD_ERASE2:
		out_be32(&ifc->ifc_nand.nand_fir0,
			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));

		out_be32(&ifc->ifc_nand.nand_fcr0,
			 (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
			 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));

		out_be32(&ifc->ifc_nand.nand_fbcr, 0);
		ctrl->read_bytes = 0;
		fsl_ifc_run_command(mtd);
		return;

	/* SEQIN sets up the addr buffer and all registers except the length */
	case NAND_CMD_SEQIN: {
		u32 nand_fcr0;
		ctrl->column = column;
		ctrl->oob = 0;

		if (mtd->writesize > 512) {
			nand_fcr0 =
				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT);

			out_be32(&ifc->ifc_nand.nand_fir0,
				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
				 (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) |
				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT));
			out_be32(&ifc->ifc_nand.nand_fir1, 0);
		} else {
			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
					IFC_NAND_FCR0_CMD1_SHIFT) |
				    (NAND_CMD_SEQIN <<
					IFC_NAND_FCR0_CMD2_SHIFT));

			out_be32(&ifc->ifc_nand.nand_fir0,
				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
				 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
			out_be32(&ifc->ifc_nand.nand_fir1,
				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT));

			if (column >= mtd->writesize)
				nand_fcr0 |=
				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
			else
				nand_fcr0 |=
				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
		}

		if (column >= mtd->writesize) {
			/* OOB area --> READOOB */
			column -= mtd->writesize;
			ctrl->oob = 1;
		}
		out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0);
		set_addr(mtd, column, page_addr, ctrl->oob);
		return;
	}

	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
	case NAND_CMD_PAGEPROG:
		if (ctrl->oob)
			out_be32(&ifc->ifc_nand.nand_fbcr,
					ctrl->index - ctrl->column);
		else
			out_be32(&ifc->ifc_nand.nand_fbcr, 0);

		fsl_ifc_run_command(mtd);
		return;

	case NAND_CMD_STATUS:
		out_be32(&ifc->ifc_nand.nand_fir0,
				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
		out_be32(&ifc->ifc_nand.nand_fcr0,
				NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
		out_be32(&ifc->ifc_nand.nand_fbcr, 1);
		set_addr(mtd, 0, 0, 0);
		ctrl->read_bytes = 1;

		fsl_ifc_run_command(mtd);

		/* Chip sometimes reporting write protect even when it's not */
		out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
		return;

	case NAND_CMD_RESET:
		out_be32(&ifc->ifc_nand.nand_fir0,
				IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
		out_be32(&ifc->ifc_nand.nand_fcr0,
				NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
		fsl_ifc_run_command(mtd);
		return;

	default:
		printf("%s: error, unsupported command 0x%x.\n",
			__func__, command);
	}
}

/*
 * Write buf to the IFC NAND Controller Data Buffer
 */
static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	unsigned int bufsize = mtd->writesize + mtd->oobsize;

	if (len <= 0) {
		printf("%s of %d bytes", __func__, len);
		ctrl->status = 0;
		return;
	}

	if ((unsigned int)len > bufsize - ctrl->index) {
		printf("%s beyond end of buffer "
		       "(%d requested, %u available)\n",
			__func__, len, bufsize - ctrl->index);
		len = bufsize - ctrl->index;
	}

	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
	ctrl->index += len;
}

/*
 * read a byte from either the IFC hardware buffer if it has any data left
 * otherwise issue a command to read a single byte.
 */
static u8 fsl_ifc_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;

	/* If there are still bytes in the IFC buffer, then use the
	 * next byte. */
	if (ctrl->index < ctrl->read_bytes)
		return in_8(&ctrl->addr[ctrl->index++]);

	printf("%s beyond end of buffer\n", __func__);
	return ERR_BYTE;
}

/*
 * Read two bytes from the IFC hardware buffer
 * read function for 16-bit buswith
 */
static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	uint16_t data;

	/*
	 * If there are still bytes in the IFC buffer, then use the
	 * next byte.
	 */
	if (ctrl->index < ctrl->read_bytes) {
		data = in_be16((uint16_t *)&ctrl->
					addr[ctrl->index]);
		ctrl->index += 2;
		return (uint8_t)data;
	}

	printf("%s beyond end of buffer\n", __func__);
	return ERR_BYTE;
}

/*
 * Read from the IFC Controller Data Buffer
 */
static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	int avail;

	if (len < 0)
		return;

	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
	ctrl->index += avail;

	if (len > avail)
		printf("%s beyond end of buffer "
		       "(%d requested, %d available)\n",
		       __func__, len, avail);
}

/*
 * Verify buffer against the IFC Controller Data Buffer
 */
static int fsl_ifc_verify_buf(struct mtd_info *mtd,
			       const u_char *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	int i;

	if (len < 0) {
		printf("%s of %d bytes", __func__, len);
		return -EINVAL;
	}

	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
		printf("%s beyond end of buffer "
		       "(%d requested, %u available)\n",
		       __func__, len, ctrl->read_bytes - ctrl->index);

		ctrl->index = ctrl->read_bytes;
		return -EINVAL;
	}

	for (i = 0; i < len; i++)
		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
			break;

	ctrl->index += len;
	return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO;
}

/* This function is called after Program and Erase Operations to
 * check for success or failure.
 */
static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
	struct fsl_ifc *ifc = ctrl->regs;
	u32 nand_fsr;

	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
		return NAND_STATUS_FAIL;

	/* Use READ_STATUS command, but wait for the device to be ready */
	out_be32(&ifc->ifc_nand.nand_fir0,
		 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
		 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
	out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS <<
			IFC_NAND_FCR0_CMD0_SHIFT);
	out_be32(&ifc->ifc_nand.nand_fbcr, 1);
	set_addr(mtd, 0, 0, 0);
	ctrl->read_bytes = 1;

	fsl_ifc_run_command(mtd);

	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
		return NAND_STATUS_FAIL;

	nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr);

	/* Chip sometimes reporting write protect even when it's not */
	nand_fsr = nand_fsr | NAND_STATUS_WP;
	return nand_fsr;
}

static int fsl_ifc_read_page(struct mtd_info *mtd,
			      struct nand_chip *chip,
			      uint8_t *buf, int page)
{
	struct fsl_ifc_mtd *priv = chip->priv;
	struct fsl_ifc_ctrl *ctrl = priv->ctrl;

	fsl_ifc_read_buf(mtd, buf, mtd->writesize);
	fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC)
		mtd->ecc_stats.failed++;

	return 0;
}

/* ECC will be calculated automatically, and errors will be detected in
 * waitfunc.
 */
static void fsl_ifc_write_page(struct mtd_info *mtd,
				struct nand_chip *chip,
				const uint8_t *buf)
{
	fsl_ifc_write_buf(mtd, buf, mtd->writesize);
	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
}

static void fsl_ifc_ctrl_init(void)
{
	ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
	if (!ifc_ctrl)
		return;

	ifc_ctrl->regs = IFC_BASE_ADDR;

	/* clear event registers */
	out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U);
	out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U);

	/* Enable error and event for any detected errors */
	out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en,
			IFC_NAND_EVTER_EN_OPC_EN |
			IFC_NAND_EVTER_EN_PGRDCMPL_EN |
			IFC_NAND_EVTER_EN_FTOER_EN |
			IFC_NAND_EVTER_EN_WPER_EN);

	out_be32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0);
}

static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
{
}

static void fsl_ifc_sram_init(void)
{
	struct fsl_ifc *ifc = ifc_ctrl->regs;
	uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0;
	long long end_tick;

	cs = ifc_ctrl->cs_nand >> IFC_NAND_CSEL_SHIFT;

	/* Save CSOR and CSOR_ext */
	csor = in_be32(&ifc_ctrl->regs->csor_cs[cs].csor);
	csor_ext = in_be32(&ifc_ctrl->regs->csor_cs[cs].csor_ext);

	/* chage PageSize 8K and SpareSize 1K*/
	csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
	out_be32(&ifc_ctrl->regs->csor_cs[cs].csor, csor_8k);
	out_be32(&ifc_ctrl->regs->csor_cs[cs].csor_ext, 0x0000400);

	/* READID */
	out_be32(&ifc->ifc_nand.nand_fir0,
			(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
			(IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
			(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
	out_be32(&ifc->ifc_nand.nand_fcr0,
			NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
	out_be32(&ifc->ifc_nand.row3, 0x0);

	out_be32(&ifc->ifc_nand.nand_fbcr, 0x0);

	/* Program ROW0/COL0 */
	out_be32(&ifc->ifc_nand.row0, 0x0);
	out_be32(&ifc->ifc_nand.col0, 0x0);

	/* set the chip select for NAND Transaction */
	out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand);

	/* start read seq */
	out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT);

	/* wait for NAND Machine complete flag or timeout */
	end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks();

	while (end_tick > get_ticks()) {
		ifc_ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat);

		if (ifc_ctrl->status & IFC_NAND_EVTER_STAT_OPC)
			break;
	}

	out_be32(&ifc->ifc_nand.nand_evter_stat, ifc_ctrl->status);

	/* Restore CSOR and CSOR_ext */
	out_be32(&ifc_ctrl->regs->csor_cs[cs].csor, csor);
	out_be32(&ifc_ctrl->regs->csor_cs[cs].csor_ext, csor_ext);
}

int board_nand_init(struct nand_chip *nand)
{
	struct fsl_ifc_mtd *priv;
	struct nand_ecclayout *layout;
	uint32_t cspr = 0, csor = 0, ver = 0;

	if (!ifc_ctrl) {
		fsl_ifc_ctrl_init();
		if (!ifc_ctrl)
			return -1;
	}

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->ctrl = ifc_ctrl;
	priv->vbase = nand->IO_ADDR_R;

	/* Find which chip select it is connected to.
	 */
	for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) {
		phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R);

		cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr);
		csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor);

		if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND &&
		    (cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) {
			ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT;
			break;
		}
	}

	if (priv->bank >= MAX_BANKS) {
		printf("%s: address did not match any "
		       "chip selects\n", __func__);
		kfree(priv);
		return -ENODEV;
	}

	ifc_ctrl->chips[priv->bank] = priv;

	/* fill in nand_chip structure */
	/* set up function call table */

	nand->write_buf = fsl_ifc_write_buf;
	nand->read_buf = fsl_ifc_read_buf;
	nand->verify_buf = fsl_ifc_verify_buf;
	nand->select_chip = fsl_ifc_select_chip;
	nand->cmdfunc = fsl_ifc_cmdfunc;
	nand->waitfunc = fsl_ifc_wait;

	/* set up nand options */
	nand->bbt_td = &bbt_main_descr;
	nand->bbt_md = &bbt_mirror_descr;

	/* set up nand options */
	nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR |
			NAND_USE_FLASH_BBT | NAND_NO_SUBPAGE_WRITE;

	if (cspr & CSPR_PORT_SIZE_16) {
		nand->read_byte = fsl_ifc_read_byte16;
		nand->options |= NAND_BUSWIDTH_16;
	} else {
		nand->read_byte = fsl_ifc_read_byte;
	}

	nand->controller = &ifc_ctrl->controller;
	nand->priv = priv;

	nand->ecc.read_page = fsl_ifc_read_page;
	nand->ecc.write_page = fsl_ifc_write_page;

	/* Hardware generates ECC per 512 Bytes */
	nand->ecc.size = 512;
	nand->ecc.bytes = 8;

	switch (csor & CSOR_NAND_PGS_MASK) {
	case CSOR_NAND_PGS_512:
		if (nand->options & NAND_BUSWIDTH_16) {
			layout = &oob_512_16bit_ecc4;
		} else {
			layout = &oob_512_8bit_ecc4;

			/* Avoid conflict with bad block marker */
			bbt_main_descr.offs = 0;
			bbt_mirror_descr.offs = 0;
		}

		priv->bufnum_mask = 15;
		break;

	case CSOR_NAND_PGS_2K:
		layout = &oob_2048_ecc4;
		priv->bufnum_mask = 3;
		break;

	case CSOR_NAND_PGS_4K:
		if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
		    CSOR_NAND_ECC_MODE_4) {
			layout = &oob_4096_ecc4;
		} else {
			layout = &oob_4096_ecc8;
			nand->ecc.bytes = 16;
		}

		priv->bufnum_mask = 1;
		break;

	default:
		printf("ifc nand: bad csor %#x: bad page size\n", csor);
		return -ENODEV;
	}

	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
	if (csor & CSOR_NAND_ECC_DEC_EN) {
		nand->ecc.mode = NAND_ECC_HW;
		nand->ecc.layout = layout;
	} else {
		nand->ecc.mode = NAND_ECC_SOFT;
	}

	ver = in_be32(&ifc_ctrl->regs->ifc_rev);
	if (ver == FSL_IFC_V1_1_0)
		fsl_ifc_sram_init();

	return 0;
}