summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/fsl_upm.c
blob: 3ae0044f26e8ba42bbb429cc542e68a2e9fa4a45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * FSL UPM NAND driver
 *
 * Copyright (C) 2007 MontaVista Software, Inc.
 *                    Anton Vorontsov <avorontsov@ru.mvista.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <config.h>
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/fsl_upm.h>
#include <nand.h>

static void fsl_upm_start_pattern(struct fsl_upm *upm, u32 pat_offset)
{
	clrsetbits_be32(upm->mxmr, MxMR_MAD_MSK, MxMR_OP_RUNP | pat_offset);
	(void)in_be32(upm->mxmr);
}

static void fsl_upm_end_pattern(struct fsl_upm *upm)
{
	clrbits_be32(upm->mxmr, MxMR_OP_RUNP);

	while (in_be32(upm->mxmr) & MxMR_OP_RUNP)
		eieio();
}

static void fsl_upm_run_pattern(struct fsl_upm *upm, int width,
				void __iomem *io_addr, u32 mar)
{
	out_be32(upm->mar, mar);
	(void)in_be32(upm->mar);
	switch (width) {
	case 8:
		out_8(io_addr, 0x0);
		break;
	case 16:
		out_be16(io_addr, 0x0);
		break;
	case 32:
		out_be32(io_addr, 0x0);
		break;
	}
}

static void fun_wait(struct fsl_upm_nand *fun)
{
	if (fun->dev_ready) {
		while (!fun->dev_ready(fun->chip_nr))
			debug("unexpected busy state\n");
	} else {
		/*
		 * If the R/B pin is not connected,
		 * a short delay is necessary.
		 */
		udelay(1);
	}
}

#if CONFIG_SYS_NAND_MAX_CHIPS > 1
static void fun_select_chip(struct mtd_info *mtd, int chip_nr)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_upm_nand *fun = chip->priv;

	if (chip_nr >= 0) {
		fun->chip_nr = chip_nr;
		chip->IO_ADDR_R = chip->IO_ADDR_W =
			fun->upm.io_addr + fun->chip_offset * chip_nr;
	} else if (chip_nr == -1) {
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
	}
}
#endif

static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_upm_nand *fun = chip->priv;
	void __iomem *io_addr;
	u32 mar;

	if (!(ctrl & fun->last_ctrl)) {
		fsl_upm_end_pattern(&fun->upm);

		if (cmd == NAND_CMD_NONE)
			return;

		fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
	}

	if (ctrl & NAND_CTRL_CHANGE) {
		if (ctrl & NAND_ALE)
			fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
		else if (ctrl & NAND_CLE)
			fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
	}

	mar = cmd << (32 - fun->width);
	io_addr = fun->upm.io_addr;
#if CONFIG_SYS_NAND_MAX_CHIPS > 1
	if (fun->chip_nr > 0) {
		io_addr += fun->chip_offset * fun->chip_nr;
		if (fun->upm_mar_chip_offset)
			mar |= fun->upm_mar_chip_offset * fun->chip_nr;
	}
#endif
	fsl_upm_run_pattern(&fun->upm, fun->width, io_addr, mar);

	/*
	 * Some boards/chips needs this.  At least the MPC8360E-RDK
	 * needs it.  Probably weird chip, because I don't see any
	 * need for this on MPC8555E + Samsung K9F1G08U0A.  Usually
	 * here are 0-2 unexpected busy states per block read.
	 */
	if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
		fun_wait(fun);
}

static u8 upm_nand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;

	return in_8(chip->IO_ADDR_R);
}

static void upm_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;
	struct fsl_upm_nand *fun = chip->priv;

	for (i = 0; i < len; i++) {
		out_8(chip->IO_ADDR_W, buf[i]);
		if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
			fun_wait(fun);
	}

	if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
		fun_wait(fun);
}

static void upm_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;

	for (i = 0; i < len; i++)
		buf[i] = in_8(chip->IO_ADDR_R);
}

static int upm_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;
	struct nand_chip *chip = mtd->priv;

	for (i = 0; i < len; i++) {
		if (buf[i] != in_8(chip->IO_ADDR_R))
			return -EFAULT;
	}

	return 0;
}

static int nand_dev_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_upm_nand *fun = chip->priv;

	return fun->dev_ready(fun->chip_nr);
}

int fsl_upm_nand_init(struct nand_chip *chip, struct fsl_upm_nand *fun)
{
	if (fun->width != 8 && fun->width != 16 && fun->width != 32)
		return -ENOSYS;

	fun->last_ctrl = NAND_CLE;

	chip->priv = fun;
	chip->chip_delay = fun->chip_delay;
	chip->ecc.mode = NAND_ECC_SOFT;
	chip->cmd_ctrl = fun_cmd_ctrl;
#if CONFIG_SYS_NAND_MAX_CHIPS > 1
	chip->select_chip = fun_select_chip;
#endif
	chip->read_byte = upm_nand_read_byte;
	chip->read_buf = upm_nand_read_buf;
	chip->write_buf = upm_nand_write_buf;
	chip->verify_buf = upm_nand_verify_buf;
	if (fun->dev_ready)
		chip->dev_ready = nand_dev_ready;

	return 0;
}