summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/mxc_nand_spl.c
blob: 6ac2c96eeb6ac952bc7698713559657db425b8dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * (C) Copyright 2009
 * Magnus Lilja <lilja.magnus@gmail.com>
 *
 * (C) Copyright 2008
 * Maxim Artamonov, <scn1874 at yandex.ru>
 *
 * (C) Copyright 2006-2008
 * Stefan Roese, DENX Software Engineering, sr at denx.de.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <nand.h>
#include <asm/arch/imx-regs.h>
#include <asm/io.h>
#include "mxc_nand.h"

#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR;
#elif defined(MXC_NFC_V3_2)
static struct mxc_nand_regs *const nfc = (void *)NFC_BASE_ADDR_AXI;
static struct mxc_nand_ip_regs *const nfc_ip = (void *)NFC_BASE_ADDR;
#endif

static void nfc_wait_ready(void)
{
	uint32_t tmp;

#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
	while (!(readnfc(&nfc->config2) & NFC_V1_V2_CONFIG2_INT))
		;

	/* Reset interrupt flag */
	tmp = readnfc(&nfc->config2);
	tmp &= ~NFC_V1_V2_CONFIG2_INT;
	writenfc(tmp, &nfc->config2);
#elif defined(MXC_NFC_V3_2)
	while (!(readnfc(&nfc_ip->ipc) & NFC_V3_IPC_INT))
		;

	/* Reset interrupt flag */
	tmp = readnfc(&nfc_ip->ipc);
	tmp &= ~NFC_V3_IPC_INT;
	writenfc(tmp, &nfc_ip->ipc);
#endif
}

static void nfc_nand_init(void)
{
#if defined(MXC_NFC_V3_2)
	int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
	int tmp;

	tmp = (readnfc(&nfc_ip->config2) & ~(NFC_V3_CONFIG2_SPAS_MASK |
			NFC_V3_CONFIG2_EDC_MASK | NFC_V3_CONFIG2_PS_MASK)) |
		NFC_V3_CONFIG2_SPAS(CONFIG_SYS_NAND_OOBSIZE / 2) |
		NFC_V3_CONFIG2_INT_MSK | NFC_V3_CONFIG2_ECC_EN |
		NFC_V3_CONFIG2_ONE_CYCLE;
	if (CONFIG_SYS_NAND_PAGE_SIZE == 4096)
		tmp |= NFC_V3_CONFIG2_PS_4096;
	else if (CONFIG_SYS_NAND_PAGE_SIZE == 2048)
		tmp |= NFC_V3_CONFIG2_PS_2048;
	else if (CONFIG_SYS_NAND_PAGE_SIZE == 512)
		tmp |= NFC_V3_CONFIG2_PS_512;
	/*
	 * if spare size is larger that 16 bytes per 512 byte hunk
	 * then use 8 symbol correction instead of 4
	 */
	if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16)
		tmp |= NFC_V3_CONFIG2_ECC_MODE_8;
	else
		tmp &= ~NFC_V3_CONFIG2_ECC_MODE_8;
	writenfc(tmp, &nfc_ip->config2);

	tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
			NFC_V3_CONFIG3_NO_SDMA |
			NFC_V3_CONFIG3_RBB_MODE |
			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
			NFC_V3_CONFIG3_ADD_OP(0);
#ifndef CONFIG_SYS_NAND_BUSWIDTH_16
	tmp |= NFC_V3_CONFIG3_FW8;
#endif
	writenfc(tmp, &nfc_ip->config3);

	writenfc(0, &nfc_ip->delay_line);
#elif defined(MXC_NFC_V2_1)
	int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
	int config1;

	writenfc(CONFIG_SYS_NAND_OOBSIZE / 2, &nfc->spare_area_size);

	/* unlocking RAM Buff */
	writenfc(0x2, &nfc->config);

	/* hardware ECC checking and correct */
	config1 = readnfc(&nfc->config1) | NFC_V1_V2_CONFIG1_ECC_EN |
			NFC_V1_V2_CONFIG1_INT_MSK | NFC_V2_CONFIG1_ONE_CYCLE |
			NFC_V2_CONFIG1_FP_INT;
	/*
	 * if spare size is larger that 16 bytes per 512 byte hunk
	 * then use 8 symbol correction instead of 4
	 */
	if (CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16)
		config1 &= ~NFC_V2_CONFIG1_ECC_MODE_4;
	else
		config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
	writenfc(config1, &nfc->config1);
#elif defined(MXC_NFC_V1)
	/* unlocking RAM Buff */
	writenfc(0x2, &nfc->config);

	/* hardware ECC checking and correct */
	writenfc(NFC_V1_V2_CONFIG1_ECC_EN | NFC_V1_V2_CONFIG1_INT_MSK,
			&nfc->config1);
#endif
}

static void nfc_nand_command(unsigned short command)
{
	writenfc(command, &nfc->flash_cmd);
	writenfc(NFC_CMD, &nfc->operation);
	nfc_wait_ready();
}

static void nfc_nand_address(unsigned short address)
{
	writenfc(address, &nfc->flash_addr);
	writenfc(NFC_ADDR, &nfc->operation);
	nfc_wait_ready();
}

static void nfc_nand_page_address(unsigned int page_address)
{
	unsigned int page_count;

	nfc_nand_address(0x00);

	/* code only for large page flash */
	if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
		nfc_nand_address(0x00);

	page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;

	if (page_address <= page_count) {
		page_count--; /* transform 0x01000000 to 0x00ffffff */
		do {
			nfc_nand_address(page_address & 0xff);
			page_address = page_address >> 8;
			page_count = page_count >> 8;
		} while (page_count);
	}

	nfc_nand_address(0x00);
}

static void nfc_nand_data_output(void)
{
#ifdef NAND_MXC_2K_MULTI_CYCLE
	int i;
#endif

#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
	writenfc(0, &nfc->buf_addr);
#elif defined(MXC_NFC_V3_2)
	int config1 = readnfc(&nfc->config1);
	config1 &= ~NFC_V3_CONFIG1_RBA_MASK;
	writenfc(config1, &nfc->config1);
#endif
	writenfc(NFC_OUTPUT, &nfc->operation);
	nfc_wait_ready();
#ifdef NAND_MXC_2K_MULTI_CYCLE
	/*
	 * This NAND controller requires multiple input commands
	 * for pages larger than 512 bytes.
	 */
	for (i = 1; i < CONFIG_SYS_NAND_PAGE_SIZE / 512; i++) {
		writenfc(i, &nfc->buf_addr);
		writenfc(NFC_OUTPUT, &nfc->operation);
		nfc_wait_ready();
	}
#endif
}

static int nfc_nand_check_ecc(void)
{
#if defined(MXC_NFC_V1)
	u16 ecc_status = readw(&nfc->ecc_status_result);
	return (ecc_status & 0x3) == 2 || (ecc_status >> 2) == 2;
#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
	u32 ecc_status = readl(&nfc->ecc_status_result);
	int ecc_per_page = CONFIG_SYS_NAND_PAGE_SIZE / 512;
	int err_limit = CONFIG_SYS_NAND_OOBSIZE / ecc_per_page > 16 ? 8 : 4;
	int subpages = CONFIG_SYS_NAND_PAGE_SIZE / 512;

	do {
		if ((ecc_status & 0xf) > err_limit)
			return 1;
		ecc_status >>= 4;
	} while (--subpages);

	return 0;
#endif
}

static void nfc_nand_read_page(unsigned int page_address)
{
	/* read in first 0 buffer */
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
	writenfc(0, &nfc->buf_addr);
#elif defined(MXC_NFC_V3_2)
	int config1 = readnfc(&nfc->config1);
	config1 &= ~NFC_V3_CONFIG1_RBA_MASK;
	writenfc(config1, &nfc->config1);
#endif
	nfc_nand_command(NAND_CMD_READ0);
	nfc_nand_page_address(page_address);

	if (CONFIG_SYS_NAND_PAGE_SIZE > 512)
		nfc_nand_command(NAND_CMD_READSTART);

	nfc_nand_data_output(); /* fill the main buffer 0 */
}

static int nfc_read_page(unsigned int page_address, unsigned char *buf)
{
	int i;
	u32 *src;
	u32 *dst;

	nfc_nand_read_page(page_address);

	if (nfc_nand_check_ecc())
		return -1;

	src = (u32 *)&nfc->main_area[0][0];
	dst = (u32 *)buf;

	/* main copy loop from NAND-buffer to SDRAM memory */
	for (i = 0; i < CONFIG_SYS_NAND_PAGE_SIZE / 4; i++) {
		writel(readl(src), dst);
		src++;
		dst++;
	}

	return 0;
}

static int is_badblock(int pagenumber)
{
	int page = pagenumber;
	u32 badblock;
	u32 *src;

	/* Check the first two pages for bad block markers */
	for (page = pagenumber; page < pagenumber + 2; page++) {
		nfc_nand_read_page(page);

		src = (u32 *)&nfc->spare_area[0][0];

		/*
		 * IMPORTANT NOTE: The nand flash controller uses a non-
		 * standard layout for large page devices. This can
		 * affect the position of the bad block marker.
		 */
		/* Get the bad block marker */
		badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]);
		badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4);
		badblock &= 0xff;

		/* bad block marker verify */
		if (badblock != 0xff)
			return 1; /* potential bad block */
	}

	return 0;
}

int nand_spl_load_image(uint32_t from, unsigned int size, void *buf)
{
	int i;
	unsigned int page;
	unsigned int maxpages = CONFIG_SYS_NAND_SIZE /
				CONFIG_SYS_NAND_PAGE_SIZE;

	nfc_nand_init();

	/* Convert to page number */
	page = from / CONFIG_SYS_NAND_PAGE_SIZE;
	i = 0;

	size = roundup(size, CONFIG_SYS_NAND_PAGE_SIZE);
	while (i < size / CONFIG_SYS_NAND_PAGE_SIZE) {
		if (nfc_read_page(page, buf) < 0)
			return -1;

		page++;
		i++;
		buf = buf + CONFIG_SYS_NAND_PAGE_SIZE;

		/*
		 * Check if we have crossed a block boundary, and if so
		 * check for bad block.
		 */
		if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) {
			/*
			 * Yes, new block. See if this block is good. If not,
			 * loop until we find a good block.
			 */
			while (is_badblock(page)) {
				page = page + CONFIG_SYS_NAND_PAGE_COUNT;
				/* Check i we've reached the end of flash. */
				if (page >= maxpages)
					return -1;
			}
		}
	}

	return 0;
}

#ifndef CONFIG_SPL_FRAMEWORK
/*
 * The main entry for NAND booting. It's necessary that SDRAM is already
 * configured and available since this code loads the main U-Boot image
 * from NAND into SDRAM and starts it from there.
 */
void nand_boot(void)
{
	__attribute__((noreturn)) void (*uboot)(void);

	/*
	 * CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must
	 * be aligned to full pages
	 */
	if (!nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
			CONFIG_SYS_NAND_U_BOOT_SIZE,
			(uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) {
		/* Copy from NAND successful, start U-Boot */
		uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
		uboot();
	} else {
		/* Unrecoverable error when copying from NAND */
		hang();
	}
}
#endif

void nand_init(void) {}
void nand_deselect(void) {}