summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/mxs_nand.c
blob: 14d321001732924d44a5b3d25b370653013ffabe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
// SPDX-License-Identifier: GPL-2.0+
/*
 * Freescale i.MX28 NAND flash driver
 *
 * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
 * on behalf of DENX Software Engineering GmbH
 *
 * Based on code from LTIB:
 * Freescale GPMI NFC NAND Flash Driver
 *
 * Copyright (C) 2010 Freescale Semiconductor, Inc.
 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
 */

#include <common.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/types.h>
#include <malloc.h>
#include <nand.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/mach-imx/regs-bch.h>
#include <asm/mach-imx/regs-gpmi.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/dma.h>
#include "mxs_nand.h"

#define	MXS_NAND_DMA_DESCRIPTOR_COUNT		4

#define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE		512
#if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
#define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	2
#else
#define	MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT	0
#endif
#define	MXS_NAND_METADATA_SIZE			10
#define	MXS_NAND_BITS_PER_ECC_LEVEL		13

#if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32
#define	MXS_NAND_COMMAND_BUFFER_SIZE		32
#else
#define	MXS_NAND_COMMAND_BUFFER_SIZE		CONFIG_SYS_CACHELINE_SIZE
#endif

#define	MXS_NAND_BCH_TIMEOUT			10000

struct mxs_nand_info {
	struct nand_chip chip;
	int		cur_chip;

	uint32_t	cmd_queue_len;
	uint32_t	data_buf_size;

	uint8_t		*cmd_buf;
	uint8_t		*data_buf;
	uint8_t		*oob_buf;

	uint8_t		marking_block_bad;
	uint8_t		raw_oob_mode;

	/* Functions with altered behaviour */
	int		(*hooked_read_oob)(struct mtd_info *mtd,
				loff_t from, struct mtd_oob_ops *ops);
	int		(*hooked_write_oob)(struct mtd_info *mtd,
				loff_t to, struct mtd_oob_ops *ops);
	int		(*hooked_block_markbad)(struct mtd_info *mtd,
				loff_t ofs);

	/* DMA descriptors */
	struct mxs_dma_desc	**desc;
	uint32_t		desc_index;
};

struct nand_ecclayout fake_ecc_layout;
static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
static int galois_field = 13;

/*
 * Cache management functions
 */
#ifndef	CONFIG_SYS_DCACHE_OFF
static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
{
	uint32_t addr = (uint32_t)info->data_buf;

	flush_dcache_range(addr, addr + info->data_buf_size);
}

static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
{
	uint32_t addr = (uint32_t)info->data_buf;

	invalidate_dcache_range(addr, addr + info->data_buf_size);
}

static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
{
	uint32_t addr = (uint32_t)info->cmd_buf;

	flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
}
#else
static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
#endif

static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
{
	struct mxs_dma_desc *desc;

	if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
		printf("MXS NAND: Too many DMA descriptors requested\n");
		return NULL;
	}

	desc = info->desc[info->desc_index];
	info->desc_index++;

	return desc;
}

static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
{
	int i;
	struct mxs_dma_desc *desc;

	for (i = 0; i < info->desc_index; i++) {
		desc = info->desc[i];
		memset(desc, 0, sizeof(struct mxs_dma_desc));
		desc->address = (dma_addr_t)desc;
	}

	info->desc_index = 0;
}

static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
{
	return page_data_size / chunk_data_size;
}

static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
{
	return ecc_strength * galois_field;
}

static uint32_t mxs_nand_aux_status_offset(void)
{
	return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
}

static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
						uint32_t page_oob_size)
{
	int ecc_strength;
	int max_ecc_strength_supported;

	/* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
	if (is_mx6sx() || is_mx7())
		max_ecc_strength_supported = 62;
	else
		max_ecc_strength_supported = 40;

	/*
	 * Determine the ECC layout with the formula:
	 *	ECC bits per chunk = (total page spare data bits) /
	 *		(bits per ECC level) / (chunks per page)
	 * where:
	 *	total page spare data bits =
	 *		(page oob size - meta data size) * (bits per byte)
	 */
	ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
			/ (galois_field *
			   mxs_nand_ecc_chunk_cnt(page_data_size));

	return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
}

static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
						uint32_t ecc_strength)
{
	uint32_t chunk_data_size_in_bits;
	uint32_t chunk_ecc_size_in_bits;
	uint32_t chunk_total_size_in_bits;
	uint32_t block_mark_chunk_number;
	uint32_t block_mark_chunk_bit_offset;
	uint32_t block_mark_bit_offset;

	chunk_data_size_in_bits = chunk_data_size * 8;
	chunk_ecc_size_in_bits  = mxs_nand_ecc_size_in_bits(ecc_strength);

	chunk_total_size_in_bits =
			chunk_data_size_in_bits + chunk_ecc_size_in_bits;

	/* Compute the bit offset of the block mark within the physical page. */
	block_mark_bit_offset = page_data_size * 8;

	/* Subtract the metadata bits. */
	block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;

	/*
	 * Compute the chunk number (starting at zero) in which the block mark
	 * appears.
	 */
	block_mark_chunk_number =
			block_mark_bit_offset / chunk_total_size_in_bits;

	/*
	 * Compute the bit offset of the block mark within its chunk, and
	 * validate it.
	 */
	block_mark_chunk_bit_offset = block_mark_bit_offset -
			(block_mark_chunk_number * chunk_total_size_in_bits);

	if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
		return 1;

	/*
	 * Now that we know the chunk number in which the block mark appears,
	 * we can subtract all the ECC bits that appear before it.
	 */
	block_mark_bit_offset -=
		block_mark_chunk_number * chunk_ecc_size_in_bits;

	return block_mark_bit_offset;
}

static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
{
	uint32_t ecc_strength;
	ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
	return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
}

static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
{
	uint32_t ecc_strength;
	ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
	return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
}

/*
 * Wait for BCH complete IRQ and clear the IRQ
 */
static int mxs_nand_wait_for_bch_complete(void)
{
	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
	int timeout = MXS_NAND_BCH_TIMEOUT;
	int ret;

	ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
		BCH_CTRL_COMPLETE_IRQ, timeout);

	writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);

	return ret;
}

/*
 * This is the function that we install in the cmd_ctrl function pointer of the
 * owning struct nand_chip. The only functions in the reference implementation
 * that use these functions pointers are cmdfunc and select_chip.
 *
 * In this driver, we implement our own select_chip, so this function will only
 * be called by the reference implementation's cmdfunc. For this reason, we can
 * ignore the chip enable bit and concentrate only on sending bytes to the NAND
 * Flash.
 */
static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	struct mxs_dma_desc *d;
	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
	int ret;

	/*
	 * If this condition is true, something is _VERY_ wrong in MTD
	 * subsystem!
	 */
	if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
		printf("MXS NAND: Command queue too long\n");
		return;
	}

	/*
	 * Every operation begins with a command byte and a series of zero or
	 * more address bytes. These are distinguished by either the Address
	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
	 * asserted. When MTD is ready to execute the command, it will
	 * deasert both latch enables.
	 *
	 * Rather than run a separate DMA operation for every single byte, we
	 * queue them up and run a single DMA operation for the entire series
	 * of command and data bytes.
	 */
	if (ctrl & (NAND_ALE | NAND_CLE)) {
		if (data != NAND_CMD_NONE)
			nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
		return;
	}

	/*
	 * If control arrives here, MTD has deasserted both the ALE and CLE,
	 * which means it's ready to run an operation. Check if we have any
	 * bytes to send.
	 */
	if (nand_info->cmd_queue_len == 0)
		return;

	/* Compile the DMA descriptor -- a descriptor that sends command. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
		MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
		MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
		(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);

	d->cmd.address = (dma_addr_t)nand_info->cmd_buf;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_WRITE |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_CLE |
		GPMI_CTRL0_ADDRESS_INCREMENT |
		nand_info->cmd_queue_len;

	mxs_dma_desc_append(channel, d);

	/* Flush caches */
	mxs_nand_flush_cmd_buf(nand_info);

	/* Execute the DMA chain. */
	ret = mxs_dma_go(channel);
	if (ret)
		printf("MXS NAND: Error sending command\n");

	mxs_nand_return_dma_descs(nand_info);

	/* Reset the command queue. */
	nand_info->cmd_queue_len = 0;
}

/*
 * Test if the NAND flash is ready.
 */
static int mxs_nand_device_ready(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
	struct mxs_gpmi_regs *gpmi_regs =
		(struct mxs_gpmi_regs *)MXS_GPMI_BASE;
	uint32_t tmp;

	tmp = readl(&gpmi_regs->hw_gpmi_stat);
	tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);

	return tmp & 1;
}

/*
 * Select the NAND chip.
 */
static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);

	nand_info->cur_chip = chip;
}

/*
 * Handle block mark swapping.
 *
 * Note that, when this function is called, it doesn't know whether it's
 * swapping the block mark, or swapping it *back* -- but it doesn't matter
 * because the the operation is the same.
 */
static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
					uint8_t *data_buf, uint8_t *oob_buf)
{
	uint32_t bit_offset;
	uint32_t buf_offset;

	uint32_t src;
	uint32_t dst;

	bit_offset = mxs_nand_mark_bit_offset(mtd);
	buf_offset = mxs_nand_mark_byte_offset(mtd);

	/*
	 * Get the byte from the data area that overlays the block mark. Since
	 * the ECC engine applies its own view to the bits in the page, the
	 * physical block mark won't (in general) appear on a byte boundary in
	 * the data.
	 */
	src = data_buf[buf_offset] >> bit_offset;
	src |= data_buf[buf_offset + 1] << (8 - bit_offset);

	dst = oob_buf[0];

	oob_buf[0] = src;

	data_buf[buf_offset] &= ~(0xff << bit_offset);
	data_buf[buf_offset + 1] &= 0xff << bit_offset;

	data_buf[buf_offset] |= dst << bit_offset;
	data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
}

/*
 * Read data from NAND.
 */
static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	struct mxs_dma_desc *d;
	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
	int ret;

	if (length > NAND_MAX_PAGESIZE) {
		printf("MXS NAND: DMA buffer too big\n");
		return;
	}

	if (!buf) {
		printf("MXS NAND: DMA buffer is NULL\n");
		return;
	}

	/* Compile the DMA descriptor - a descriptor that reads data. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
		(length << MXS_DMA_DESC_BYTES_OFFSET);

	d->cmd.address = (dma_addr_t)nand_info->data_buf;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_READ |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA |
		length;

	mxs_dma_desc_append(channel, d);

	/*
	 * A DMA descriptor that waits for the command to end and the chip to
	 * become ready.
	 *
	 * I think we actually should *not* be waiting for the chip to become
	 * ready because, after all, we don't care. I think the original code
	 * did that and no one has re-thought it yet.
	 */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
		MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);

	d->cmd.address = 0;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA;

	mxs_dma_desc_append(channel, d);

	/* Invalidate caches */
	mxs_nand_inval_data_buf(nand_info);

	/* Execute the DMA chain. */
	ret = mxs_dma_go(channel);
	if (ret) {
		printf("MXS NAND: DMA read error\n");
		goto rtn;
	}

	/* Invalidate caches */
	mxs_nand_inval_data_buf(nand_info);

	memcpy(buf, nand_info->data_buf, length);

rtn:
	mxs_nand_return_dma_descs(nand_info);
}

/*
 * Write data to NAND.
 */
static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				int length)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	struct mxs_dma_desc *d;
	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
	int ret;

	if (length > NAND_MAX_PAGESIZE) {
		printf("MXS NAND: DMA buffer too big\n");
		return;
	}

	if (!buf) {
		printf("MXS NAND: DMA buffer is NULL\n");
		return;
	}

	memcpy(nand_info->data_buf, buf, length);

	/* Compile the DMA descriptor - a descriptor that writes data. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
		(length << MXS_DMA_DESC_BYTES_OFFSET);

	d->cmd.address = (dma_addr_t)nand_info->data_buf;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_WRITE |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA |
		length;

	mxs_dma_desc_append(channel, d);

	/* Flush caches */
	mxs_nand_flush_data_buf(nand_info);

	/* Execute the DMA chain. */
	ret = mxs_dma_go(channel);
	if (ret)
		printf("MXS NAND: DMA write error\n");

	mxs_nand_return_dma_descs(nand_info);
}

/*
 * Read a single byte from NAND.
 */
static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
{
	uint8_t buf;
	mxs_nand_read_buf(mtd, &buf, 1);
	return buf;
}

/*
 * Read a page from NAND.
 */
static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
					uint8_t *buf, int oob_required,
					int page)
{
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	struct mxs_dma_desc *d;
	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
	uint32_t corrected = 0, failed = 0;
	uint8_t	*status;
	int i, ret;

	/* Compile the DMA descriptor - wait for ready. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
		(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);

	d->cmd.address = 0;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA;

	mxs_dma_desc_append(channel, d);

	/* Compile the DMA descriptor - enable the BCH block and read. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
		MXS_DMA_DESC_WAIT4END |	(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);

	d->cmd.address = 0;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_READ |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA |
		(mtd->writesize + mtd->oobsize);
	d->cmd.pio_words[1] = 0;
	d->cmd.pio_words[2] =
		GPMI_ECCCTRL_ENABLE_ECC |
		GPMI_ECCCTRL_ECC_CMD_DECODE |
		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
	d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;

	mxs_dma_desc_append(channel, d);

	/* Compile the DMA descriptor - disable the BCH block. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
		MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
		(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);

	d->cmd.address = 0;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA |
		(mtd->writesize + mtd->oobsize);
	d->cmd.pio_words[1] = 0;
	d->cmd.pio_words[2] = 0;

	mxs_dma_desc_append(channel, d);

	/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
		MXS_DMA_DESC_DEC_SEM;

	d->cmd.address = 0;

	mxs_dma_desc_append(channel, d);

	/* Invalidate caches */
	mxs_nand_inval_data_buf(nand_info);

	/* Execute the DMA chain. */
	ret = mxs_dma_go(channel);
	if (ret) {
		printf("MXS NAND: DMA read error\n");
		goto rtn;
	}

	ret = mxs_nand_wait_for_bch_complete();
	if (ret) {
		printf("MXS NAND: BCH read timeout\n");
		goto rtn;
	}

	/* Invalidate caches */
	mxs_nand_inval_data_buf(nand_info);

	/* Read DMA completed, now do the mark swapping. */
	mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);

	/* Loop over status bytes, accumulating ECC status. */
	status = nand_info->oob_buf + mxs_nand_aux_status_offset();
	for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
		if (status[i] == 0x00)
			continue;

		if (status[i] == 0xff)
			continue;

		if (status[i] == 0xfe) {
			failed++;
			continue;
		}

		corrected += status[i];
	}

	/* Propagate ECC status to the owning MTD. */
	mtd->ecc_stats.failed += failed;
	mtd->ecc_stats.corrected += corrected;

	/*
	 * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
	 * details about our policy for delivering the OOB.
	 *
	 * We fill the caller's buffer with set bits, and then copy the block
	 * mark to the caller's buffer. Note that, if block mark swapping was
	 * necessary, it has already been done, so we can rely on the first
	 * byte of the auxiliary buffer to contain the block mark.
	 */
	memset(nand->oob_poi, 0xff, mtd->oobsize);

	nand->oob_poi[0] = nand_info->oob_buf[0];

	memcpy(buf, nand_info->data_buf, mtd->writesize);

rtn:
	mxs_nand_return_dma_descs(nand_info);

	return ret;
}

/*
 * Write a page to NAND.
 */
static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
				struct nand_chip *nand, const uint8_t *buf,
				int oob_required, int page)
{
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	struct mxs_dma_desc *d;
	uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
	int ret;

	memcpy(nand_info->data_buf, buf, mtd->writesize);
	memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);

	/* Handle block mark swapping. */
	mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);

	/* Compile the DMA descriptor - write data. */
	d = mxs_nand_get_dma_desc(nand_info);
	d->cmd.data =
		MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
		MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
		(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);

	d->cmd.address = 0;

	d->cmd.pio_words[0] =
		GPMI_CTRL0_COMMAND_MODE_WRITE |
		GPMI_CTRL0_WORD_LENGTH |
		(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
		GPMI_CTRL0_ADDRESS_NAND_DATA;
	d->cmd.pio_words[1] = 0;
	d->cmd.pio_words[2] =
		GPMI_ECCCTRL_ENABLE_ECC |
		GPMI_ECCCTRL_ECC_CMD_ENCODE |
		GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
	d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
	d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
	d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;

	mxs_dma_desc_append(channel, d);

	/* Flush caches */
	mxs_nand_flush_data_buf(nand_info);

	/* Execute the DMA chain. */
	ret = mxs_dma_go(channel);
	if (ret) {
		printf("MXS NAND: DMA write error\n");
		goto rtn;
	}

	ret = mxs_nand_wait_for_bch_complete();
	if (ret) {
		printf("MXS NAND: BCH write timeout\n");
		goto rtn;
	}

rtn:
	mxs_nand_return_dma_descs(nand_info);
	return 0;
}

/*
 * Read OOB from NAND.
 *
 * This function is a veneer that replaces the function originally installed by
 * the NAND Flash MTD code.
 */
static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
					struct mtd_oob_ops *ops)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
	int ret;

	if (ops->mode == MTD_OPS_RAW)
		nand_info->raw_oob_mode = 1;
	else
		nand_info->raw_oob_mode = 0;

	ret = nand_info->hooked_read_oob(mtd, from, ops);

	nand_info->raw_oob_mode = 0;

	return ret;
}

/*
 * Write OOB to NAND.
 *
 * This function is a veneer that replaces the function originally installed by
 * the NAND Flash MTD code.
 */
static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
					struct mtd_oob_ops *ops)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
	int ret;

	if (ops->mode == MTD_OPS_RAW)
		nand_info->raw_oob_mode = 1;
	else
		nand_info->raw_oob_mode = 0;

	ret = nand_info->hooked_write_oob(mtd, to, ops);

	nand_info->raw_oob_mode = 0;

	return ret;
}

/*
 * Mark a block bad in NAND.
 *
 * This function is a veneer that replaces the function originally installed by
 * the NAND Flash MTD code.
 */
static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
	int ret;

	nand_info->marking_block_bad = 1;

	ret = nand_info->hooked_block_markbad(mtd, ofs);

	nand_info->marking_block_bad = 0;

	return ret;
}

/*
 * There are several places in this driver where we have to handle the OOB and
 * block marks. This is the function where things are the most complicated, so
 * this is where we try to explain it all. All the other places refer back to
 * here.
 *
 * These are the rules, in order of decreasing importance:
 *
 * 1) Nothing the caller does can be allowed to imperil the block mark, so all
 *    write operations take measures to protect it.
 *
 * 2) In read operations, the first byte of the OOB we return must reflect the
 *    true state of the block mark, no matter where that block mark appears in
 *    the physical page.
 *
 * 3) ECC-based read operations return an OOB full of set bits (since we never
 *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
 *    return).
 *
 * 4) "Raw" read operations return a direct view of the physical bytes in the
 *    page, using the conventional definition of which bytes are data and which
 *    are OOB. This gives the caller a way to see the actual, physical bytes
 *    in the page, without the distortions applied by our ECC engine.
 *
 * What we do for this specific read operation depends on whether we're doing
 * "raw" read, or an ECC-based read.
 *
 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
 * easy. When reading a page, for example, the NAND Flash MTD code calls our
 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
 * ECC-based or raw view of the page is implicit in which function it calls
 * (there is a similar pair of ECC-based/raw functions for writing).
 *
 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
 * caller wants an ECC-based or raw view of the page is not propagated down to
 * this driver.
 *
 * Since our OOB *is* covered by ECC, we need this information. So, we hook the
 * ecc.read_oob and ecc.write_oob function pointers in the owning
 * struct mtd_info with our own functions. These hook functions set the
 * raw_oob_mode field so that, when control finally arrives here, we'll know
 * what to do.
 */
static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
				int page)
{
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);

	/*
	 * First, fill in the OOB buffer. If we're doing a raw read, we need to
	 * get the bytes from the physical page. If we're not doing a raw read,
	 * we need to fill the buffer with set bits.
	 */
	if (nand_info->raw_oob_mode) {
		/*
		 * If control arrives here, we're doing a "raw" read. Send the
		 * command to read the conventional OOB and read it.
		 */
		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
		nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
	} else {
		/*
		 * If control arrives here, we're not doing a "raw" read. Fill
		 * the OOB buffer with set bits and correct the block mark.
		 */
		memset(nand->oob_poi, 0xff, mtd->oobsize);

		nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
		mxs_nand_read_buf(mtd, nand->oob_poi, 1);
	}

	return 0;

}

/*
 * Write OOB data to NAND.
 */
static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
					int page)
{
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	uint8_t block_mark = 0;

	/*
	 * There are fundamental incompatibilities between the i.MX GPMI NFC and
	 * the NAND Flash MTD model that make it essentially impossible to write
	 * the out-of-band bytes.
	 *
	 * We permit *ONE* exception. If the *intent* of writing the OOB is to
	 * mark a block bad, we can do that.
	 */

	if (!nand_info->marking_block_bad) {
		printf("NXS NAND: Writing OOB isn't supported\n");
		return -EIO;
	}

	/* Write the block mark. */
	nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	nand->write_buf(mtd, &block_mark, 1);
	nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	/* Check if it worked. */
	if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}

/*
 * Claims all blocks are good.
 *
 * In principle, this function is *only* called when the NAND Flash MTD system
 * isn't allowed to keep an in-memory bad block table, so it is forced to ask
 * the driver for bad block information.
 *
 * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
 * this function is *only* called when we take it away.
 *
 * Thus, this function is only called when we want *all* blocks to look good,
 * so it *always* return success.
 */
static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
{
	return 0;
}

/*
 * At this point, the physical NAND Flash chips have been identified and
 * counted, so we know the physical geometry. This enables us to make some
 * important configuration decisions.
 *
 * The return value of this function propagates directly back to this driver's
 * board_nand_init(). Anything other than zero will cause this driver to
 * tear everything down and declare failure.
 */
int mxs_nand_setup_ecc(struct mtd_info *mtd)
{
	struct nand_chip *nand = mtd_to_nand(mtd);
	struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
	struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
	uint32_t tmp;

	if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
		galois_field = 14;
		chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
	}

	if (mtd->oobsize > chunk_data_size) {
		printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
		return -EINVAL;
	}

	/* Configure BCH and set NFC geometry */
	mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);

	/* Configure layout 0 */
	tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
		<< BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
	tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
	tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
		<< BCH_FLASHLAYOUT0_ECC0_OFFSET;
	tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
	tmp |= (14 == galois_field ? 1 : 0) <<
		BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
	writel(tmp, &bch_regs->hw_bch_flash0layout0);

	tmp = (mtd->writesize + mtd->oobsize)
		<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
	tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
		<< BCH_FLASHLAYOUT1_ECCN_OFFSET;
	tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
	tmp |= (14 == galois_field ? 1 : 0) <<
		BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
	writel(tmp, &bch_regs->hw_bch_flash0layout1);

	/* Set *all* chip selects to use layout 0 */
	writel(0, &bch_regs->hw_bch_layoutselect);

	/* Enable BCH complete interrupt */
	writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);

	/* Hook some operations at the MTD level. */
	if (mtd->_read_oob != mxs_nand_hook_read_oob) {
		nand_info->hooked_read_oob = mtd->_read_oob;
		mtd->_read_oob = mxs_nand_hook_read_oob;
	}

	if (mtd->_write_oob != mxs_nand_hook_write_oob) {
		nand_info->hooked_write_oob = mtd->_write_oob;
		mtd->_write_oob = mxs_nand_hook_write_oob;
	}

	if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
		nand_info->hooked_block_markbad = mtd->_block_markbad;
		mtd->_block_markbad = mxs_nand_hook_block_markbad;
	}

	return 0;
}

/*
 * Allocate DMA buffers
 */
int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
{
	uint8_t *buf;
	const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;

	nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);

	/* DMA buffers */
	buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
	if (!buf) {
		printf("MXS NAND: Error allocating DMA buffers\n");
		return -ENOMEM;
	}

	memset(buf, 0, nand_info->data_buf_size);

	nand_info->data_buf = buf;
	nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
	/* Command buffers */
	nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
				MXS_NAND_COMMAND_BUFFER_SIZE);
	if (!nand_info->cmd_buf) {
		free(buf);
		printf("MXS NAND: Error allocating command buffers\n");
		return -ENOMEM;
	}
	memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
	nand_info->cmd_queue_len = 0;

	return 0;
}

/*
 * Initializes the NFC hardware.
 */
int mxs_nand_init(struct mxs_nand_info *info)
{
	struct mxs_gpmi_regs *gpmi_regs =
		(struct mxs_gpmi_regs *)MXS_GPMI_BASE;
	struct mxs_bch_regs *bch_regs =
		(struct mxs_bch_regs *)MXS_BCH_BASE;
	int i = 0, j, ret = 0;

	info->desc = malloc(sizeof(struct mxs_dma_desc *) *
				MXS_NAND_DMA_DESCRIPTOR_COUNT);
	if (!info->desc) {
		ret = -ENOMEM;
		goto err1;
	}

	/* Allocate the DMA descriptors. */
	for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
		info->desc[i] = mxs_dma_desc_alloc();
		if (!info->desc[i]) {
			ret = -ENOMEM;
			goto err2;
		}
	}

	/* Init the DMA controller. */
	mxs_dma_init();
	for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
		j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
		ret = mxs_dma_init_channel(j);
		if (ret)
			goto err3;
	}

	/* Reset the GPMI block. */
	mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
	mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);

	/*
	 * Choose NAND mode, set IRQ polarity, disable write protection and
	 * select BCH ECC.
	 */
	clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
			GPMI_CTRL1_GPMI_MODE,
			GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
			GPMI_CTRL1_BCH_MODE);

	return 0;

err3:
	for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
		mxs_dma_release(j);
err2:
	for (--i; i >= 0; i--)
		mxs_dma_desc_free(info->desc[i]);
	free(info->desc);
err1:
	if (ret == -ENOMEM)
		printf("MXS NAND: Unable to allocate DMA descriptors\n");
	return ret;
}

int mxs_nand_init_spl(struct nand_chip *nand)
{
	struct mxs_nand_info *nand_info;
	int err;

	nand_info = malloc(sizeof(struct mxs_nand_info));
	if (!nand_info) {
		printf("MXS NAND: Failed to allocate private data\n");
		return -ENOMEM;
	}
	memset(nand_info, 0, sizeof(struct mxs_nand_info));

	err = mxs_nand_alloc_buffers(nand_info);
	if (err)
		return err;

	err = mxs_nand_init(nand_info);
	if (err)
		return err;

	nand_set_controller_data(nand, nand_info);

	nand->options |= NAND_NO_SUBPAGE_WRITE;

	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;
	nand->dev_ready		= mxs_nand_device_ready;
	nand->select_chip	= mxs_nand_select_chip;

	nand->read_byte		= mxs_nand_read_byte;
	nand->read_buf		= mxs_nand_read_buf;

	nand->ecc.read_page	= mxs_nand_ecc_read_page;

	nand->ecc.mode		= NAND_ECC_HW;
	nand->ecc.bytes		= 9;
	nand->ecc.size		= 512;
	nand->ecc.strength	= 8;

	return 0;
}

void board_nand_init(void)
{
	struct mtd_info *mtd;
	struct mxs_nand_info *nand_info;
	struct nand_chip *nand;
	int err;

	nand_info = malloc(sizeof(struct mxs_nand_info));
	if (!nand_info) {
		printf("MXS NAND: Failed to allocate private data\n");
			return;
	}
	memset(nand_info, 0, sizeof(struct mxs_nand_info));

	nand = &nand_info->chip;
	mtd = nand_to_mtd(nand);
	err = mxs_nand_alloc_buffers(nand_info);
	if (err)
		goto err1;

	err = mxs_nand_init(nand_info);
	if (err)
		goto err2;

	memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));

	nand_set_controller_data(nand, nand_info);
	nand->options |= NAND_NO_SUBPAGE_WRITE;

	nand->cmd_ctrl		= mxs_nand_cmd_ctrl;

	nand->dev_ready		= mxs_nand_device_ready;
	nand->select_chip	= mxs_nand_select_chip;
	nand->block_bad		= mxs_nand_block_bad;

	nand->read_byte		= mxs_nand_read_byte;

	nand->read_buf		= mxs_nand_read_buf;
	nand->write_buf		= mxs_nand_write_buf;

	/* first scan to find the device and get the page size */
	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
		goto err2;

	if (mxs_nand_setup_ecc(mtd))
		goto err2;

	nand->ecc.read_page	= mxs_nand_ecc_read_page;
	nand->ecc.write_page	= mxs_nand_ecc_write_page;
	nand->ecc.read_oob	= mxs_nand_ecc_read_oob;
	nand->ecc.write_oob	= mxs_nand_ecc_write_oob;

	nand->ecc.layout	= &fake_ecc_layout;
	nand->ecc.mode		= NAND_ECC_HW;
	nand->ecc.bytes		= 9;
	nand->ecc.size		= 512;
	nand->ecc.strength	= 8;

	/* second phase scan */
	err = nand_scan_tail(mtd);
	if (err)
		goto err2;

	err = nand_register(0, mtd);
	if (err)
		goto err2;

	return;

err2:
	free(nand_info->data_buf);
	free(nand_info->cmd_buf);
err1:
	free(nand_info);
	return;
}