summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/stm32_fmc2_nand.c
blob: 1e4d7577ddfe8ed8081bb98a7d694c78fe41b48c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
 * Copyright (C) STMicroelectronics 2019
 * Author: Christophe Kerello <christophe.kerello@st.com>
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <nand.h>
#include <reset.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>

/* Bad block marker length */
#define FMC2_BBM_LEN			2

/* ECC step size */
#define FMC2_ECC_STEP_SIZE		512

/* Command delay */
#define FMC2_RB_DELAY_US		30

/* Max chip enable */
#define FMC2_MAX_CE			2

/* Timings */
#define FMC2_THIZ			1
#define FMC2_TIO			8000
#define FMC2_TSYNC			3000
#define FMC2_PCR_TIMING_MASK		0xf
#define FMC2_PMEM_PATT_TIMING_MASK	0xff

/* FMC2 Controller Registers */
#define FMC2_BCR1			0x0
#define FMC2_PCR			0x80
#define FMC2_SR				0x84
#define FMC2_PMEM			0x88
#define FMC2_PATT			0x8c
#define FMC2_HECCR			0x94
#define FMC2_BCHISR			0x254
#define FMC2_BCHICR			0x258
#define FMC2_BCHPBR1			0x260
#define FMC2_BCHPBR2			0x264
#define FMC2_BCHPBR3			0x268
#define FMC2_BCHPBR4			0x26c
#define FMC2_BCHDSR0			0x27c
#define FMC2_BCHDSR1			0x280
#define FMC2_BCHDSR2			0x284
#define FMC2_BCHDSR3			0x288
#define FMC2_BCHDSR4			0x28c

/* Register: FMC2_BCR1 */
#define FMC2_BCR1_FMC2EN		BIT(31)

/* Register: FMC2_PCR */
#define FMC2_PCR_PWAITEN		BIT(1)
#define FMC2_PCR_PBKEN			BIT(2)
#define FMC2_PCR_PWID			GENMASK(5, 4)
#define FMC2_PCR_PWID_BUSWIDTH_8	0
#define FMC2_PCR_PWID_BUSWIDTH_16	1
#define FMC2_PCR_ECCEN			BIT(6)
#define FMC2_PCR_ECCALG			BIT(8)
#define FMC2_PCR_TCLR			GENMASK(12, 9)
#define FMC2_PCR_TCLR_DEFAULT		0xf
#define FMC2_PCR_TAR			GENMASK(16, 13)
#define FMC2_PCR_TAR_DEFAULT		0xf
#define FMC2_PCR_ECCSS			GENMASK(19, 17)
#define FMC2_PCR_ECCSS_512		1
#define FMC2_PCR_ECCSS_2048		3
#define FMC2_PCR_BCHECC			BIT(24)
#define FMC2_PCR_WEN			BIT(25)

/* Register: FMC2_SR */
#define FMC2_SR_NWRF			BIT(6)

/* Register: FMC2_PMEM */
#define FMC2_PMEM_MEMSET		GENMASK(7, 0)
#define FMC2_PMEM_MEMWAIT		GENMASK(15, 8)
#define FMC2_PMEM_MEMHOLD		GENMASK(23, 16)
#define FMC2_PMEM_MEMHIZ		GENMASK(31, 24)
#define FMC2_PMEM_DEFAULT		0x0a0a0a0a

/* Register: FMC2_PATT */
#define FMC2_PATT_ATTSET		GENMASK(7, 0)
#define FMC2_PATT_ATTWAIT		GENMASK(15, 8)
#define FMC2_PATT_ATTHOLD		GENMASK(23, 16)
#define FMC2_PATT_ATTHIZ		GENMASK(31, 24)
#define FMC2_PATT_DEFAULT		0x0a0a0a0a

/* Register: FMC2_BCHISR */
#define FMC2_BCHISR_DERF		BIT(1)
#define FMC2_BCHISR_EPBRF		BIT(4)

/* Register: FMC2_BCHICR */
#define FMC2_BCHICR_CLEAR_IRQ		GENMASK(4, 0)

/* Register: FMC2_BCHDSR0 */
#define FMC2_BCHDSR0_DUE		BIT(0)
#define FMC2_BCHDSR0_DEF		BIT(1)
#define FMC2_BCHDSR0_DEN		GENMASK(7, 4)

/* Register: FMC2_BCHDSR1 */
#define FMC2_BCHDSR1_EBP1		GENMASK(12, 0)
#define FMC2_BCHDSR1_EBP2		GENMASK(28, 16)

/* Register: FMC2_BCHDSR2 */
#define FMC2_BCHDSR2_EBP3		GENMASK(12, 0)
#define FMC2_BCHDSR2_EBP4		GENMASK(28, 16)

/* Register: FMC2_BCHDSR3 */
#define FMC2_BCHDSR3_EBP5		GENMASK(12, 0)
#define FMC2_BCHDSR3_EBP6		GENMASK(28, 16)

/* Register: FMC2_BCHDSR4 */
#define FMC2_BCHDSR4_EBP7		GENMASK(12, 0)
#define FMC2_BCHDSR4_EBP8		GENMASK(28, 16)

#define FMC2_NSEC_PER_SEC		1000000000L

#define FMC2_TIMEOUT_5S			5000000

enum stm32_fmc2_ecc {
	FMC2_ECC_HAM = 1,
	FMC2_ECC_BCH4 = 4,
	FMC2_ECC_BCH8 = 8
};

struct stm32_fmc2_timings {
	u8 tclr;
	u8 tar;
	u8 thiz;
	u8 twait;
	u8 thold_mem;
	u8 tset_mem;
	u8 thold_att;
	u8 tset_att;
};

struct stm32_fmc2_nand {
	struct nand_chip chip;
	struct stm32_fmc2_timings timings;
	int ncs;
	int cs_used[FMC2_MAX_CE];
};

static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
{
	return container_of(chip, struct stm32_fmc2_nand, chip);
}

struct stm32_fmc2_nfc {
	struct nand_hw_control base;
	struct stm32_fmc2_nand nand;
	struct nand_ecclayout ecclayout;
	void __iomem *io_base;
	void __iomem *data_base[FMC2_MAX_CE];
	void __iomem *cmd_base[FMC2_MAX_CE];
	void __iomem *addr_base[FMC2_MAX_CE];
	struct clk clk;

	u8 cs_assigned;
	int cs_sel;
};

static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_hw_control *base)
{
	return container_of(base, struct stm32_fmc2_nfc, base);
}

static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
{
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
	struct stm32_fmc2_timings *timings = &nand->timings;
	u32 pmem, patt;

	/* Set tclr/tar timings */
	clrsetbits_le32(nfc->io_base + FMC2_PCR,
			FMC2_PCR_TCLR | FMC2_PCR_TAR,
			FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
			FIELD_PREP(FMC2_PCR_TAR, timings->tar));

	/* Set tset/twait/thold/thiz timings in common bank */
	pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
	pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
	pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
	pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
	writel(pmem, nfc->io_base + FMC2_PMEM);

	/* Set tset/twait/thold/thiz timings in attribut bank */
	patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
	patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
	patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
	patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
	writel(patt, nfc->io_base + FMC2_PATT);
}

static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
{
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	u32 pcr = 0, pcr_mask;

	/* Configure ECC algorithm (default configuration is Hamming) */
	pcr_mask = FMC2_PCR_ECCALG;
	pcr_mask |= FMC2_PCR_BCHECC;
	if (chip->ecc.strength == FMC2_ECC_BCH8) {
		pcr |= FMC2_PCR_ECCALG;
		pcr |= FMC2_PCR_BCHECC;
	} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
		pcr |= FMC2_PCR_ECCALG;
	}

	/* Set buswidth */
	pcr_mask |= FMC2_PCR_PWID;
	if (chip->options & NAND_BUSWIDTH_16)
		pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);

	/* Set ECC sector size */
	pcr_mask |= FMC2_PCR_ECCSS;
	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);

	clrsetbits_le32(nfc->io_base + FMC2_PCR, pcr_mask, pcr);
}

static void stm32_fmc2_nfc_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);

	if (chipnr < 0 || chipnr >= nand->ncs)
		return;

	if (nand->cs_used[chipnr] == nfc->cs_sel)
		return;

	nfc->cs_sel = nand->cs_used[chipnr];
	chip->IO_ADDR_R = nfc->data_base[nfc->cs_sel];
	chip->IO_ADDR_W = nfc->data_base[nfc->cs_sel];

	stm32_fmc2_nfc_setup(chip);
	stm32_fmc2_nfc_timings_init(chip);
}

static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc,
					   bool set)
{
	u32 pcr;

	pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
		    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);

	clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_PWID, pcr);
}

static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
{
	clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_ECCEN,
			enable ? FMC2_PCR_ECCEN : 0);
}

static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
{
	writel(FMC2_BCHICR_CLEAR_IRQ, nfc->io_base + FMC2_BCHICR);
}

static void stm32_fmc2_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd,
				    unsigned int ctrl)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);

	if (cmd == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE) {
		writeb(cmd, nfc->cmd_base[nfc->cs_sel]);
		return;
	}

	writeb(cmd, nfc->addr_base[nfc->cs_sel]);
}

/*
 * Enable ECC logic and reset syndrome/parity bits previously calculated
 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
 */
static void stm32_fmc2_nfc_hwctl(struct mtd_info *mtd, int mode)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);

	stm32_fmc2_nfc_set_ecc(nfc, false);

	if (chip->ecc.strength != FMC2_ECC_HAM) {
		clrsetbits_le32(nfc->io_base + FMC2_PCR, FMC2_PCR_WEN,
				mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);

		stm32_fmc2_nfc_clear_bch_irq(nfc);
	}

	stm32_fmc2_nfc_set_ecc(nfc, true);
}

/*
 * ECC Hamming calculation
 * ECC is 3 bytes for 512 bytes of data (supports error correction up to
 * max of 1-bit)
 */
static int stm32_fmc2_nfc_ham_calculate(struct mtd_info *mtd, const u8 *data,
					u8 *ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	u32 heccr, sr;
	int ret;

	ret = readl_poll_timeout(nfc->io_base + FMC2_SR, sr,
				 sr & FMC2_SR_NWRF, FMC2_TIMEOUT_5S);
	if (ret < 0) {
		pr_err("Ham timeout\n");
		return ret;
	}

	heccr = readl(nfc->io_base + FMC2_HECCR);

	ecc[0] = heccr;
	ecc[1] = heccr >> 8;
	ecc[2] = heccr >> 16;

	stm32_fmc2_nfc_set_ecc(nfc, false);

	return 0;
}

static int stm32_fmc2_nfc_ham_correct(struct mtd_info *mtd, u8 *dat,
				      u8 *read_ecc, u8 *calc_ecc)
{
	u8 bit_position = 0, b0, b1, b2;
	u32 byte_addr = 0, b;
	u32 i, shifting = 1;

	/* Indicate which bit and byte is faulty (if any) */
	b0 = read_ecc[0] ^ calc_ecc[0];
	b1 = read_ecc[1] ^ calc_ecc[1];
	b2 = read_ecc[2] ^ calc_ecc[2];
	b = b0 | (b1 << 8) | (b2 << 16);

	/* No errors */
	if (likely(!b))
		return 0;

	/* Calculate bit position */
	for (i = 0; i < 3; i++) {
		switch (b % 4) {
		case 2:
			bit_position += shifting;
		case 1:
			break;
		default:
			return -EBADMSG;
		}
		shifting <<= 1;
		b >>= 2;
	}

	/* Calculate byte position */
	shifting = 1;
	for (i = 0; i < 9; i++) {
		switch (b % 4) {
		case 2:
			byte_addr += shifting;
		case 1:
			break;
		default:
			return -EBADMSG;
		}
		shifting <<= 1;
		b >>= 2;
	}

	/* Flip the bit */
	dat[byte_addr] ^= (1 << bit_position);

	return 1;
}

/*
 * ECC BCH calculation and correction
 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
 * max of 4-bit/8-bit)
 */

static int stm32_fmc2_nfc_bch_calculate(struct mtd_info *mtd, const u8 *data,
					u8 *ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	u32 bchpbr, bchisr;
	int ret;

	/* Wait until the BCH code is ready */
	ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
				 bchisr & FMC2_BCHISR_EPBRF, FMC2_TIMEOUT_5S);
	if (ret < 0) {
		pr_err("Bch timeout\n");
		return ret;
	}

	/* Read parity bits */
	bchpbr = readl(nfc->io_base + FMC2_BCHPBR1);
	ecc[0] = bchpbr;
	ecc[1] = bchpbr >> 8;
	ecc[2] = bchpbr >> 16;
	ecc[3] = bchpbr >> 24;

	bchpbr = readl(nfc->io_base + FMC2_BCHPBR2);
	ecc[4] = bchpbr;
	ecc[5] = bchpbr >> 8;
	ecc[6] = bchpbr >> 16;

	if (chip->ecc.strength == FMC2_ECC_BCH8) {
		ecc[7] = bchpbr >> 24;

		bchpbr = readl(nfc->io_base + FMC2_BCHPBR3);
		ecc[8] = bchpbr;
		ecc[9] = bchpbr >> 8;
		ecc[10] = bchpbr >> 16;
		ecc[11] = bchpbr >> 24;

		bchpbr = readl(nfc->io_base + FMC2_BCHPBR4);
		ecc[12] = bchpbr;
	}

	stm32_fmc2_nfc_set_ecc(nfc, false);

	return 0;
}

static int stm32_fmc2_nfc_bch_correct(struct mtd_info *mtd, u8 *dat,
				      u8 *read_ecc, u8 *calc_ecc)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	u32 bchdsr0, bchdsr1, bchdsr2, bchdsr3, bchdsr4, bchisr;
	u16 pos[8];
	int i, ret, den, eccsize = chip->ecc.size;
	unsigned int nb_errs = 0;

	/* Wait until the decoding error is ready */
	ret = readl_poll_timeout(nfc->io_base + FMC2_BCHISR, bchisr,
				 bchisr & FMC2_BCHISR_DERF, FMC2_TIMEOUT_5S);
	if (ret < 0) {
		pr_err("Bch timeout\n");
		return ret;
	}

	bchdsr0 = readl(nfc->io_base + FMC2_BCHDSR0);
	bchdsr1 = readl(nfc->io_base + FMC2_BCHDSR1);
	bchdsr2 = readl(nfc->io_base + FMC2_BCHDSR2);
	bchdsr3 = readl(nfc->io_base + FMC2_BCHDSR3);
	bchdsr4 = readl(nfc->io_base + FMC2_BCHDSR4);

	stm32_fmc2_nfc_set_ecc(nfc, false);

	/* No errors found */
	if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
		return 0;

	/* Too many errors detected */
	if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
		return -EBADMSG;

	pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
	pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
	pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
	pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
	pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
	pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
	pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
	pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);

	den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
	for (i = 0; i < den; i++) {
		if (pos[i] < eccsize * 8) {
			__change_bit(pos[i], (unsigned long *)dat);
			nb_errs++;
		}
	}

	return nb_errs;
}

static int stm32_fmc2_nfc_read_page(struct mtd_info *mtd,
				    struct nand_chip *chip, u8 *buf,
				    int oob_required, int page)
{
	int i, s, stat, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	int eccstrength = chip->ecc.strength;
	u8 *p = buf;
	u8 *ecc_calc = chip->buffers->ecccalc;
	u8 *ecc_code = chip->buffers->ecccode;
	unsigned int max_bitflips = 0;

	for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
	     s++, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_READ);

		/* Read the nand page sector (512 bytes) */
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, s * eccsize, -1);
		chip->read_buf(mtd, p, eccsize);

		/* Read the corresponding ECC bytes */
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i, -1);
		chip->read_buf(mtd, ecc_code, eccbytes);

		/* Correct the data */
		stat = chip->ecc.correct(mtd, p, ecc_code, ecc_calc);
		if (stat == -EBADMSG)
			/* Check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
							   ecc_code, eccbytes,
							   NULL, 0,
							   eccstrength);

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}

	/* Read oob */
	if (oob_required) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	}

	return max_bitflips;
}

static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
{
	u32 pcr = readl(nfc->io_base + FMC2_PCR);

	/* Set CS used to undefined */
	nfc->cs_sel = -1;

	/* Enable wait feature and nand flash memory bank */
	pcr |= FMC2_PCR_PWAITEN;
	pcr |= FMC2_PCR_PBKEN;

	/* Set buswidth to 8 bits mode for identification */
	pcr &= ~FMC2_PCR_PWID;

	/* ECC logic is disabled */
	pcr &= ~FMC2_PCR_ECCEN;

	/* Default mode */
	pcr &= ~FMC2_PCR_ECCALG;
	pcr &= ~FMC2_PCR_BCHECC;
	pcr &= ~FMC2_PCR_WEN;

	/* Set default ECC sector size */
	pcr &= ~FMC2_PCR_ECCSS;
	pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);

	/* Set default tclr/tar timings */
	pcr &= ~FMC2_PCR_TCLR;
	pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
	pcr &= ~FMC2_PCR_TAR;
	pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);

	/* Enable FMC2 controller */
	setbits_le32(nfc->io_base + FMC2_BCR1, FMC2_BCR1_FMC2EN);

	writel(pcr, nfc->io_base + FMC2_PCR);
	writel(FMC2_PMEM_DEFAULT, nfc->io_base + FMC2_PMEM);
	writel(FMC2_PATT_DEFAULT, nfc->io_base + FMC2_PATT);
}

static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
					const struct nand_sdr_timings *sdrt)
{
	struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
	struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
	struct stm32_fmc2_timings *tims = &nand->timings;
	unsigned long hclk = clk_get_rate(&nfc->clk);
	unsigned long hclkp = FMC2_NSEC_PER_SEC / (hclk / 1000);
	unsigned long timing, tar, tclr, thiz, twait;
	unsigned long tset_mem, tset_att, thold_mem, thold_att;

	tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
	timing = DIV_ROUND_UP(tar, hclkp) - 1;
	tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);

	tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
	timing = DIV_ROUND_UP(tclr, hclkp) - 1;
	tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);

	tims->thiz = FMC2_THIZ;
	thiz = (tims->thiz + 1) * hclkp;

	/*
	 * tWAIT > tRP
	 * tWAIT > tWP
	 * tWAIT > tREA + tIO
	 */
	twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
	twait = max_t(unsigned long, twait, sdrt->tWP_min);
	twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
	timing = DIV_ROUND_UP(twait, hclkp);
	tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);

	/*
	 * tSETUP_MEM > tCS - tWAIT
	 * tSETUP_MEM > tALS - tWAIT
	 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
	 */
	tset_mem = hclkp;
	if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
		tset_mem = sdrt->tCS_min - twait;
	if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
		tset_mem = sdrt->tALS_min - twait;
	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
	    (tset_mem < sdrt->tDS_min - (twait - thiz)))
		tset_mem = sdrt->tDS_min - (twait - thiz);
	timing = DIV_ROUND_UP(tset_mem, hclkp);
	tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);

	/*
	 * tHOLD_MEM > tCH
	 * tHOLD_MEM > tREH - tSETUP_MEM
	 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
	 */
	thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
	if (sdrt->tREH_min > tset_mem &&
	    (thold_mem < sdrt->tREH_min - tset_mem))
		thold_mem = sdrt->tREH_min - tset_mem;
	if ((sdrt->tRC_min > tset_mem + twait) &&
	    (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
		thold_mem = sdrt->tRC_min - (tset_mem + twait);
	if ((sdrt->tWC_min > tset_mem + twait) &&
	    (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
		thold_mem = sdrt->tWC_min - (tset_mem + twait);
	timing = DIV_ROUND_UP(thold_mem, hclkp);
	tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);

	/*
	 * tSETUP_ATT > tCS - tWAIT
	 * tSETUP_ATT > tCLS - tWAIT
	 * tSETUP_ATT > tALS - tWAIT
	 * tSETUP_ATT > tRHW - tHOLD_MEM
	 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
	 */
	tset_att = hclkp;
	if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
		tset_att = sdrt->tCS_min - twait;
	if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
		tset_att = sdrt->tCLS_min - twait;
	if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
		tset_att = sdrt->tALS_min - twait;
	if (sdrt->tRHW_min > thold_mem &&
	    (tset_att < sdrt->tRHW_min - thold_mem))
		tset_att = sdrt->tRHW_min - thold_mem;
	if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
	    (tset_att < sdrt->tDS_min - (twait - thiz)))
		tset_att = sdrt->tDS_min - (twait - thiz);
	timing = DIV_ROUND_UP(tset_att, hclkp);
	tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);

	/*
	 * tHOLD_ATT > tALH
	 * tHOLD_ATT > tCH
	 * tHOLD_ATT > tCLH
	 * tHOLD_ATT > tCOH
	 * tHOLD_ATT > tDH
	 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
	 * tHOLD_ATT > tADL - tSETUP_MEM
	 * tHOLD_ATT > tWH - tSETUP_MEM
	 * tHOLD_ATT > tWHR - tSETUP_MEM
	 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
	 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
	 */
	thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
	thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
	thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
	thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
	thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
	if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
	    (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
		thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
	if (sdrt->tADL_min > tset_mem &&
	    (thold_att < sdrt->tADL_min - tset_mem))
		thold_att = sdrt->tADL_min - tset_mem;
	if (sdrt->tWH_min > tset_mem &&
	    (thold_att < sdrt->tWH_min - tset_mem))
		thold_att = sdrt->tWH_min - tset_mem;
	if (sdrt->tWHR_min > tset_mem &&
	    (thold_att < sdrt->tWHR_min - tset_mem))
		thold_att = sdrt->tWHR_min - tset_mem;
	if ((sdrt->tRC_min > tset_att + twait) &&
	    (thold_att < sdrt->tRC_min - (tset_att + twait)))
		thold_att = sdrt->tRC_min - (tset_att + twait);
	if ((sdrt->tWC_min > tset_att + twait) &&
	    (thold_att < sdrt->tWC_min - (tset_att + twait)))
		thold_att = sdrt->tWC_min - (tset_att + twait);
	timing = DIV_ROUND_UP(thold_att, hclkp);
	tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
}

static int stm32_fmc2_nfc_setup_interface(struct mtd_info *mtd, int chipnr,
					  const struct nand_data_interface *cf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const struct nand_sdr_timings *sdrt;

	sdrt = nand_get_sdr_timings(cf);
	if (IS_ERR(sdrt))
		return PTR_ERR(sdrt);

	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	stm32_fmc2_nfc_calc_timings(chip, sdrt);
	stm32_fmc2_nfc_timings_init(chip);

	return 0;
}

static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
{
	chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;

	/*
	 * Specific callbacks to read/write a page depending on
	 * the algo used (Hamming, BCH).
	 */
	if (chip->ecc.strength == FMC2_ECC_HAM) {
		/* Hamming is used */
		chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
		chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
		chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
		return;
	}

	/* BCH is used */
	chip->ecc.read_page = stm32_fmc2_nfc_read_page;
	chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
	chip->ecc.correct = stm32_fmc2_nfc_bch_correct;

	if (chip->ecc.strength == FMC2_ECC_BCH8)
		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
	else
		chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
}

static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
{
	/* Hamming */
	if (strength == FMC2_ECC_HAM)
		return 4;

	/* BCH8 */
	if (strength == FMC2_ECC_BCH8)
		return 14;

	/* BCH4 */
	return 8;
}

NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
		     FMC2_ECC_STEP_SIZE,
		     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);

static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc, ofnode node)
{
	struct stm32_fmc2_nand *nand = &nfc->nand;
	u32 cs[FMC2_MAX_CE];
	int ret, i;

	if (!ofnode_get_property(node, "reg", &nand->ncs))
		return -EINVAL;

	nand->ncs /= sizeof(u32);
	if (!nand->ncs) {
		pr_err("Invalid reg property size\n");
		return -EINVAL;
	}

	ret = ofnode_read_u32_array(node, "reg", cs, nand->ncs);
	if (ret < 0) {
		pr_err("Could not retrieve reg property\n");
		return -EINVAL;
	}

	for (i = 0; i < nand->ncs; i++) {
		if (cs[i] >= FMC2_MAX_CE) {
			pr_err("Invalid reg value: %d\n",
			       nand->cs_used[i]);
			return -EINVAL;
		}

		if (nfc->cs_assigned & BIT(cs[i])) {
			pr_err("Cs already assigned: %d\n",
			       nand->cs_used[i]);
			return -EINVAL;
		}

		nfc->cs_assigned |= BIT(cs[i]);
		nand->cs_used[i] = cs[i];
	}

	nand->chip.flash_node = ofnode_to_offset(node);

	return 0;
}

static int stm32_fmc2_nfc_parse_dt(struct udevice *dev,
				   struct stm32_fmc2_nfc *nfc)
{
	ofnode child;
	int ret, nchips = 0;

	dev_for_each_subnode(child, dev)
		nchips++;

	if (!nchips) {
		pr_err("NAND chip not defined\n");
		return -EINVAL;
	}

	if (nchips > 1) {
		pr_err("Too many NAND chips defined\n");
		return -EINVAL;
	}

	dev_for_each_subnode(child, dev) {
		ret = stm32_fmc2_nfc_parse_child(nfc, child);
		if (ret)
			return ret;
	}

	return 0;
}

static int stm32_fmc2_nfc_probe(struct udevice *dev)
{
	struct stm32_fmc2_nfc *nfc = dev_get_priv(dev);
	struct stm32_fmc2_nand *nand = &nfc->nand;
	struct nand_chip *chip = &nand->chip;
	struct mtd_info *mtd = &chip->mtd;
	struct nand_ecclayout *ecclayout;
	struct resource resource;
	struct reset_ctl reset;
	int oob_index, chip_cs, mem_region, ret;
	unsigned int i;

	spin_lock_init(&nfc->controller.lock);
	init_waitqueue_head(&nfc->controller.wq);

	ret = stm32_fmc2_nfc_parse_dt(dev, nfc);
	if (ret)
		return ret;

	/* Get resources */
	ret = dev_read_resource(dev, 0, &resource);
	if (ret) {
		pr_err("Resource io_base not found");
		return ret;
	}
	nfc->io_base = (void __iomem *)resource.start;

	for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
	     chip_cs++, mem_region += 3) {
		if (!(nfc->cs_assigned & BIT(chip_cs)))
			continue;

		ret = dev_read_resource(dev, mem_region, &resource);
		if (ret) {
			pr_err("Resource data_base not found for cs%d",
			       chip_cs);
			return ret;
		}
		nfc->data_base[chip_cs] = (void __iomem *)resource.start;

		ret = dev_read_resource(dev, mem_region + 1, &resource);
		if (ret) {
			pr_err("Resource cmd_base not found for cs%d",
			       chip_cs);
			return ret;
		}
		nfc->cmd_base[chip_cs] = (void __iomem *)resource.start;

		ret = dev_read_resource(dev, mem_region + 2, &resource);
		if (ret) {
			pr_err("Resource addr_base not found for cs%d",
			       chip_cs);
			return ret;
		}
		nfc->addr_base[chip_cs] = (void __iomem *)resource.start;
	}

	/* Enable the clock */
	ret = clk_get_by_index(dev, 0, &nfc->clk);
	if (ret)
		return ret;

	ret = clk_enable(&nfc->clk);
	if (ret)
		return ret;

	/* Reset */
	ret = reset_get_by_index(dev, 0, &reset);
	if (!ret) {
		reset_assert(&reset);
		udelay(2);
		reset_deassert(&reset);
	}

	stm32_fmc2_nfc_init(nfc);

	chip->controller = &nfc->base;
	chip->select_chip = stm32_fmc2_nfc_select_chip;
	chip->setup_data_interface = stm32_fmc2_nfc_setup_interface;
	chip->cmd_ctrl = stm32_fmc2_nfc_cmd_ctrl;
	chip->chip_delay = FMC2_RB_DELAY_US;
	chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
			 NAND_USE_BOUNCE_BUFFER;

	/* Default ECC settings */
	chip->ecc.mode = NAND_ECC_HW;
	chip->ecc.size = FMC2_ECC_STEP_SIZE;
	chip->ecc.strength = FMC2_ECC_BCH8;

	ret = nand_scan_ident(mtd, nand->ncs, NULL);
	if (ret)
		return ret;

	/*
	 * Only NAND_ECC_HW mode is actually supported
	 * Hamming => ecc.strength = 1
	 * BCH4 => ecc.strength = 4
	 * BCH8 => ecc.strength = 8
	 * ECC sector size = 512
	 */
	if (chip->ecc.mode != NAND_ECC_HW) {
		pr_err("Nand_ecc_mode is not well defined in the DT\n");
		return -EINVAL;
	}

	ret = nand_check_ecc_caps(chip, &stm32_fmc2_nfc_ecc_caps,
				  mtd->oobsize - FMC2_BBM_LEN);
	if (ret) {
		pr_err("No valid ECC settings set\n");
		return ret;
	}

	if (chip->bbt_options & NAND_BBT_USE_FLASH)
		chip->bbt_options |= NAND_BBT_NO_OOB;

	stm32_fmc2_nfc_nand_callbacks_setup(chip);

	/* Define ECC layout */
	ecclayout = &nfc->ecclayout;
	ecclayout->eccbytes = chip->ecc.bytes *
			      (mtd->writesize / chip->ecc.size);
	oob_index = FMC2_BBM_LEN;
	for (i = 0; i < ecclayout->eccbytes; i++, oob_index++)
		ecclayout->eccpos[i] = oob_index;
	ecclayout->oobfree->offset = oob_index;
	ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
	chip->ecc.layout = ecclayout;

	if (chip->options & NAND_BUSWIDTH_16)
		stm32_fmc2_nfc_set_buswidth_16(nfc, true);

	ret = nand_scan_tail(mtd);
	if (ret)
		return ret;

	return nand_register(0, mtd);
}

static const struct udevice_id stm32_fmc2_nfc_match[] = {
	{ .compatible = "st,stm32mp15-fmc2" },
	{ /* Sentinel */ }
};

U_BOOT_DRIVER(stm32_fmc2_nfc) = {
	.name = "stm32_fmc2_nfc",
	.id = UCLASS_MTD,
	.of_match = stm32_fmc2_nfc_match,
	.probe = stm32_fmc2_nfc_probe,
	.priv_auto_alloc_size = sizeof(struct stm32_fmc2_nfc),
};

void board_nand_init(void)
{
	struct udevice *dev;
	int ret;

	ret = uclass_get_device_by_driver(UCLASS_MTD,
					  DM_GET_DRIVER(stm32_fmc2_nfc),
					  &dev);
	if (ret && ret != -ENODEV)
		pr_err("Failed to initialize STM32 FMC2 NFC controller. (error %d)\n",
		       ret);
}