summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/sunxi_nand_spl.c
blob: 6cde9814c4f9b246c5d3a987ffd7363c0706c086 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com>
 * Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com>
 */

#include <asm/arch/clock.h>
#include <asm/io.h>
#include <common.h>
#include <config.h>
#include <nand.h>
#include <linux/ctype.h>

/* registers */
#define NFC_CTL                    0x00000000
#define NFC_ST                     0x00000004
#define NFC_INT                    0x00000008
#define NFC_TIMING_CTL             0x0000000C
#define NFC_TIMING_CFG             0x00000010
#define NFC_ADDR_LOW               0x00000014
#define NFC_ADDR_HIGH              0x00000018
#define NFC_SECTOR_NUM             0x0000001C
#define NFC_CNT                    0x00000020
#define NFC_CMD                    0x00000024
#define NFC_RCMD_SET               0x00000028
#define NFC_WCMD_SET               0x0000002C
#define NFC_IO_DATA                0x00000030
#define NFC_ECC_CTL                0x00000034
#define NFC_ECC_ST                 0x00000038
#define NFC_DEBUG                  0x0000003C
#define NFC_ECC_CNT0               0x00000040
#define NFC_ECC_CNT1               0x00000044
#define NFC_ECC_CNT2               0x00000048
#define NFC_ECC_CNT3               0x0000004C
#define NFC_USER_DATA_BASE         0x00000050
#define NFC_EFNAND_STATUS          0x00000090
#define NFC_SPARE_AREA             0x000000A0
#define NFC_PATTERN_ID             0x000000A4
#define NFC_RAM0_BASE              0x00000400
#define NFC_RAM1_BASE              0x00000800

#define NFC_CTL_EN                 (1 << 0)
#define NFC_CTL_RESET              (1 << 1)
#define NFC_CTL_RAM_METHOD         (1 << 14)
#define NFC_CTL_PAGE_SIZE_MASK     (0xf << 8)
#define NFC_CTL_PAGE_SIZE(a)       ((fls(a) - 11) << 8)


#define NFC_ECC_EN                 (1 << 0)
#define NFC_ECC_PIPELINE           (1 << 3)
#define NFC_ECC_EXCEPTION          (1 << 4)
#define NFC_ECC_BLOCK_SIZE         (1 << 5)
#define NFC_ECC_RANDOM_EN          (1 << 9)
#define NFC_ECC_RANDOM_DIRECTION   (1 << 10)


#define NFC_ADDR_NUM_OFFSET        16
#define NFC_SEND_ADDR              (1 << 19)
#define NFC_ACCESS_DIR             (1 << 20)
#define NFC_DATA_TRANS             (1 << 21)
#define NFC_SEND_CMD1              (1 << 22)
#define NFC_WAIT_FLAG              (1 << 23)
#define NFC_SEND_CMD2              (1 << 24)
#define NFC_SEQ                    (1 << 25)
#define NFC_DATA_SWAP_METHOD       (1 << 26)
#define NFC_ROW_AUTO_INC           (1 << 27)
#define NFC_SEND_CMD3              (1 << 28)
#define NFC_SEND_CMD4              (1 << 29)
#define NFC_RAW_CMD                (0 << 30)
#define NFC_ECC_CMD                (1 << 30)
#define NFC_PAGE_CMD               (2 << 30)

#define NFC_ST_CMD_INT_FLAG        (1 << 1)
#define NFC_ST_DMA_INT_FLAG        (1 << 2)
#define NFC_ST_CMD_FIFO_STAT       (1 << 3)

#define NFC_READ_CMD_OFFSET         0
#define NFC_RANDOM_READ_CMD0_OFFSET 8
#define NFC_RANDOM_READ_CMD1_OFFSET 16

#define NFC_CMD_RNDOUTSTART        0xE0
#define NFC_CMD_RNDOUT             0x05
#define NFC_CMD_READSTART          0x30

struct nfc_config {
	int page_size;
	int ecc_strength;
	int ecc_size;
	int addr_cycles;
	int nseeds;
	bool randomize;
	bool valid;
};

/* minimal "boot0" style NAND support for Allwinner A20 */

/* random seed used by linux */
const uint16_t random_seed[128] = {
	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
};

#define DEFAULT_TIMEOUT_US	100000

static int check_value_inner(int offset, int expected_bits,
			     int timeout_us, int negation)
{
	do {
		int val = readl(offset) & expected_bits;
		if (negation ? !val : val)
			return 1;
		udelay(1);
	} while (--timeout_us);

	return 0;
}

static inline int check_value(int offset, int expected_bits,
			      int timeout_us)
{
	return check_value_inner(offset, expected_bits, timeout_us, 0);
}

static inline int check_value_negated(int offset, int unexpected_bits,
				      int timeout_us)
{
	return check_value_inner(offset, unexpected_bits, timeout_us, 1);
}

static int nand_wait_cmd_fifo_empty(void)
{
	if (!check_value_negated(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_FIFO_STAT,
				 DEFAULT_TIMEOUT_US)) {
		printf("nand: timeout waiting for empty cmd FIFO\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int nand_wait_int(void)
{
	if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG,
			 DEFAULT_TIMEOUT_US)) {
		printf("nand: timeout waiting for interruption\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static int nand_exec_cmd(u32 cmd)
{
	int ret;

	ret = nand_wait_cmd_fifo_empty();
	if (ret)
		return ret;

	writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST);
	writel(cmd, SUNXI_NFC_BASE + NFC_CMD);

	return nand_wait_int();
}

void nand_init(void)
{
	uint32_t val;

	board_nand_init();

	val = readl(SUNXI_NFC_BASE + NFC_CTL);
	/* enable and reset CTL */
	writel(val | NFC_CTL_EN | NFC_CTL_RESET,
	       SUNXI_NFC_BASE + NFC_CTL);

	if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL,
				 NFC_CTL_RESET, DEFAULT_TIMEOUT_US)) {
		printf("Couldn't initialize nand\n");
	}

	/* reset NAND */
	nand_exec_cmd(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET);
}

static void nand_apply_config(const struct nfc_config *conf)
{
	u32 val;

	nand_wait_cmd_fifo_empty();

	val = readl(SUNXI_NFC_BASE + NFC_CTL);
	val &= ~NFC_CTL_PAGE_SIZE_MASK;
	writel(val | NFC_CTL_RAM_METHOD | NFC_CTL_PAGE_SIZE(conf->page_size),
	       SUNXI_NFC_BASE + NFC_CTL);
	writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
	writel(conf->page_size, SUNXI_NFC_BASE + NFC_SPARE_AREA);
}

static int nand_load_page(const struct nfc_config *conf, u32 offs)
{
	int page = offs / conf->page_size;

	writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
	       (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
	       (NFC_CMD_READSTART << NFC_READ_CMD_OFFSET),
	       SUNXI_NFC_BASE + NFC_RCMD_SET);
	writel(((page & 0xFFFF) << 16), SUNXI_NFC_BASE + NFC_ADDR_LOW);
	writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH);

	return nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
			     NFC_SEND_ADDR | NFC_WAIT_FLAG |
			     ((conf->addr_cycles - 1) << NFC_ADDR_NUM_OFFSET));
}

static int nand_change_column(u16 column)
{
	int ret;

	writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) |
	       (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) |
	       (NFC_CMD_RNDOUTSTART << NFC_READ_CMD_OFFSET),
	       SUNXI_NFC_BASE + NFC_RCMD_SET);
	writel(column, SUNXI_NFC_BASE + NFC_ADDR_LOW);

	ret = nand_exec_cmd(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD |
			    (1 << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADDR |
			    NFC_CMD_RNDOUT);
	if (ret)
		return ret;

	/* Ensure tCCS has passed before reading data */
	udelay(1);

	return 0;
}

static const int ecc_bytes[] = {32, 46, 54, 60, 74, 88, 102, 110, 116};

static int nand_read_page(const struct nfc_config *conf, u32 offs,
			  void *dest, int len)
{
	int nsectors = len / conf->ecc_size;
	u16 rand_seed = 0;
	int oob_chunk_sz = ecc_bytes[conf->ecc_strength];
	int page = offs / conf->page_size;
	u32 ecc_st;
	int i;

	if (offs % conf->page_size || len % conf->ecc_size ||
	    len > conf->page_size || len < 0)
		return -EINVAL;

	/* Choose correct seed if randomized */
	if (conf->randomize)
		rand_seed = random_seed[page % conf->nseeds];

	/* Retrieve data from SRAM (PIO) */
	for (i = 0; i < nsectors; i++) {
		int data_off = i * conf->ecc_size;
		int oob_off = conf->page_size + (i * oob_chunk_sz);
		u8 *data = dest + data_off;

		/* Clear ECC status and restart ECC engine */
		writel(0, SUNXI_NFC_BASE + NFC_ECC_ST);
		writel((rand_seed << 16) | (conf->ecc_strength << 12) |
		       (conf->randomize ? NFC_ECC_RANDOM_EN : 0) |
		       (conf->ecc_size == 512 ? NFC_ECC_BLOCK_SIZE : 0) |
		       NFC_ECC_EN | NFC_ECC_EXCEPTION,
		       SUNXI_NFC_BASE + NFC_ECC_CTL);

		/* Move the data in SRAM */
		nand_change_column(data_off);
		writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT);
		nand_exec_cmd(NFC_DATA_TRANS);

		/*
		 * Let the ECC engine consume the ECC bytes and possibly correct
		 * the data.
		 */
		nand_change_column(oob_off);
		nand_exec_cmd(NFC_DATA_TRANS | NFC_ECC_CMD);

		/* Get the ECC status */
		ecc_st = readl(SUNXI_NFC_BASE + NFC_ECC_ST);

		/* ECC error detected. */
		if (ecc_st & 0xffff)
			return -EIO;

		/*
		 * Return 1 if the first chunk is empty (needed for
		 * configuration detection).
		 */
		if (!i && (ecc_st & 0x10000))
			return 1;

		/* Retrieve the data from SRAM */
		memcpy_fromio(data, SUNXI_NFC_BASE + NFC_RAM0_BASE,
			      conf->ecc_size);

		/* Stop the ECC engine */
		writel(readl(SUNXI_NFC_BASE + NFC_ECC_CTL) & ~NFC_ECC_EN,
		       SUNXI_NFC_BASE + NFC_ECC_CTL);

		if (data_off + conf->ecc_size >= len)
			break;
	}

	return 0;
}

static int nand_max_ecc_strength(struct nfc_config *conf)
{
	int max_oobsize, max_ecc_bytes;
	int nsectors = conf->page_size / conf->ecc_size;
	int i;

	/*
	 * ECC strength is limited by the size of the OOB area which is
	 * correlated with the page size.
	 */
	switch (conf->page_size) {
	case 2048:
		max_oobsize = 64;
		break;
	case 4096:
		max_oobsize = 256;
		break;
	case 8192:
		max_oobsize = 640;
		break;
	case 16384:
		max_oobsize = 1664;
		break;
	default:
		return -EINVAL;
	}

	max_ecc_bytes = max_oobsize / nsectors;

	for (i = 0; i < ARRAY_SIZE(ecc_bytes); i++) {
		if (ecc_bytes[i] > max_ecc_bytes)
			break;
	}

	if (!i)
		return -EINVAL;

	return i - 1;
}

static int nand_detect_ecc_config(struct nfc_config *conf, u32 offs,
				  void *dest)
{
	/* NAND with pages > 4k will likely require 1k sector size. */
	int min_ecc_size = conf->page_size > 4096 ? 1024 : 512;
	int page = offs / conf->page_size;
	int ret;

	/*
	 * In most cases, 1k sectors are preferred over 512b ones, start
	 * testing this config first.
	 */
	for (conf->ecc_size = 1024; conf->ecc_size >= min_ecc_size;
	     conf->ecc_size >>= 1) {
		int max_ecc_strength = nand_max_ecc_strength(conf);

		nand_apply_config(conf);

		/*
		 * We are starting from the maximum ECC strength because
		 * most of the time NAND vendors provide an OOB area that
		 * barely meets the ECC requirements.
		 */
		for (conf->ecc_strength = max_ecc_strength;
		     conf->ecc_strength >= 0;
		     conf->ecc_strength--) {
			conf->randomize = false;
			if (nand_change_column(0))
				return -EIO;

			/*
			 * Only read the first sector to speedup detection.
			 */
			ret = nand_read_page(conf, offs, dest, conf->ecc_size);
			if (!ret) {
				return 0;
			} else if (ret > 0) {
				/*
				 * If page is empty we can't deduce anything
				 * about the ECC config => stop the detection.
				 */
				return -EINVAL;
			}

			conf->randomize = true;
			conf->nseeds = ARRAY_SIZE(random_seed);
			do {
				if (nand_change_column(0))
					return -EIO;

				if (!nand_read_page(conf, offs, dest,
						    conf->ecc_size))
					return 0;

				/*
				 * Find the next ->nseeds value that would
				 * change the randomizer seed for the page
				 * we're trying to read.
				 */
				while (conf->nseeds >= 16) {
					int seed = page % conf->nseeds;

					conf->nseeds >>= 1;
					if (seed != page % conf->nseeds)
						break;
				}
			} while (conf->nseeds >= 16);
		}
	}

	return -EINVAL;
}

static int nand_detect_config(struct nfc_config *conf, u32 offs, void *dest)
{
	if (conf->valid)
		return 0;

	/*
	 * Modern NANDs are more likely than legacy ones, so we start testing
	 * with 5 address cycles.
	 */
	for (conf->addr_cycles = 5;
	     conf->addr_cycles >= 4;
	     conf->addr_cycles--) {
		int max_page_size = conf->addr_cycles == 4 ? 2048 : 16384;

		/*
		 * Ignoring 1k pages cause I'm not even sure this case exist
		 * in the real world.
		 */
		for (conf->page_size = 2048; conf->page_size <= max_page_size;
		     conf->page_size <<= 1) {
			if (nand_load_page(conf, offs))
				return -1;

			if (!nand_detect_ecc_config(conf, offs, dest)) {
				conf->valid = true;
				return 0;
			}
		}
	}

	return -EINVAL;
}

static int nand_read_buffer(struct nfc_config *conf, uint32_t offs,
			    unsigned int size, void *dest)
{
	int first_seed = 0, page, ret;

	size = ALIGN(size, conf->page_size);
	page = offs / conf->page_size;
	if (conf->randomize)
		first_seed = page % conf->nseeds;

	for (; size; size -= conf->page_size) {
		if (nand_load_page(conf, offs))
			return -1;

		ret = nand_read_page(conf, offs, dest, conf->page_size);
		/*
		 * The ->nseeds value should be equal to the number of pages
		 * in an eraseblock. Since we don't know this information in
		 * advance we might have picked a wrong value.
		 */
		if (ret < 0 && conf->randomize) {
			int cur_seed = page % conf->nseeds;

			/*
			 * We already tried all the seed values => we are
			 * facing a real corruption.
			 */
			if (cur_seed < first_seed)
				return -EIO;

			/* Try to adjust ->nseeds and read the page again... */
			conf->nseeds = cur_seed;

			if (nand_change_column(0))
				return -EIO;

			/* ... it still fails => it's a real corruption. */
			if (nand_read_page(conf, offs, dest, conf->page_size))
				return -EIO;
		} else if (ret && conf->randomize) {
			memset(dest, 0xff, conf->page_size);
		}

		page++;
		offs += conf->page_size;
		dest += conf->page_size;
	}

	return 0;
}

int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest)
{
	static struct nfc_config conf = { };
	int ret;

	ret = nand_detect_config(&conf, offs, dest);
	if (ret)
		return ret;

	return nand_read_buffer(&conf, offs, size, dest);
}

void nand_deselect(void)
{
	struct sunxi_ccm_reg *const ccm =
		(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;

	clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0));
#ifdef CONFIG_MACH_SUN9I
	clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA));
#else
	clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA));
#endif
	clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1);
}