1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
/*
* Copyright 2009-2014 Freescale Semiconductor, Inc. and others
*
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
* Ported to U-Boot by Stefan Agner
* Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
* Jason ported to M54418TWR and MVFA5.
* Authors: Stefan Agner <stefan.agner@toradex.com>
* Bill Pringlemeir <bpringlemeir@nbsps.com>
* Shaohui Xie <b21989@freescale.com>
* Jason Jin <Jason.jin@freescale.com>
*
* Based on original driver mpc5121_nfc.c.
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Limitations:
* - Untested on MPC5125 and M54418.
* - DMA not used.
* - 2K pages or less.
* - Only 2K page w. 64+OOB and hardware ECC.
*/
#include <common.h>
#include <malloc.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <nand.h>
#include <errno.h>
#include <asm/io.h>
/* Register Offsets */
#define NFC_FLASH_CMD1 0x3F00
#define NFC_FLASH_CMD2 0x3F04
#define NFC_COL_ADDR 0x3F08
#define NFC_ROW_ADDR 0x3F0c
#define NFC_ROW_ADDR_INC 0x3F14
#define NFC_FLASH_STATUS1 0x3F18
#define NFC_FLASH_STATUS2 0x3F1c
#define NFC_CACHE_SWAP 0x3F28
#define NFC_SECTOR_SIZE 0x3F2c
#define NFC_FLASH_CONFIG 0x3F30
#define NFC_IRQ_STATUS 0x3F38
/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
#define PAGE_2K 0x0800
#define OOB_64 0x0040
/*
* NFC_CMD2[CODE] values. See section:
* - 31.4.7 Flash Command Code Description, Vybrid manual
* - 23.8.6 Flash Command Sequencer, MPC5125 manual
*
* Briefly these are bitmasks of controller cycles.
*/
#define READ_PAGE_CMD_CODE 0x7EE0
#define PROGRAM_PAGE_CMD_CODE 0x7FC0
#define ERASE_CMD_CODE 0x4EC0
#define READ_ID_CMD_CODE 0x4804
#define RESET_CMD_CODE 0x4040
#define STATUS_READ_CMD_CODE 0x4068
/* NFC ECC mode define */
#define ECC_BYPASS 0
#define ECC_45_BYTE 6
/*** Register Mask and bit definitions */
/* NFC_FLASH_CMD1 Field */
#define CMD_BYTE2_MASK 0xFF000000
#define CMD_BYTE2_SHIFT 24
/* NFC_FLASH_CM2 Field */
#define CMD_BYTE1_MASK 0xFF000000
#define CMD_BYTE1_SHIFT 24
#define CMD_CODE_MASK 0x00FFFF00
#define CMD_CODE_SHIFT 8
#define BUFNO_MASK 0x00000006
#define BUFNO_SHIFT 1
#define START_BIT (1<<0)
/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK 0x0000FFFF
#define COL_ADDR_SHIFT 0
/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK 0x00FFFFFF
#define ROW_ADDR_SHIFT 0
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
#define ROW_ADDR_CHIP_SEL_SHIFT 24
/* NFC_FLASH_STATUS2 Field */
#define STATUS_BYTE1_MASK 0x000000FF
/* NFC_FLASH_CONFIG Field */
#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
#define CONFIG_ECC_SRAM_REQ_BIT (1<<21)
#define CONFIG_DMA_REQ_BIT (1<<20)
#define CONFIG_ECC_MODE_MASK 0x000E0000
#define CONFIG_ECC_MODE_SHIFT 17
#define CONFIG_FAST_FLASH_BIT (1<<16)
#define CONFIG_16BIT (1<<7)
#define CONFIG_BOOT_MODE_BIT (1<<6)
#define CONFIG_ADDR_AUTO_INCR_BIT (1<<5)
#define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4)
#define CONFIG_PAGE_CNT_MASK 0xF
#define CONFIG_PAGE_CNT_SHIFT 0
/* NFC_IRQ_STATUS Field */
#define IDLE_IRQ_BIT (1<<29)
#define IDLE_EN_BIT (1<<20)
#define CMD_DONE_CLEAR_BIT (1<<18)
#define IDLE_CLEAR_BIT (1<<17)
#define NFC_TIMEOUT (1000)
/* ECC status placed at end of buffers. */
#define ECC_SRAM_ADDR ((PAGE_2K+256-8) >> 3)
#define ECC_STATUS_MASK 0x80
#define ECC_ERR_COUNT 0x3F
/*
* ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
* and +7 for big-endian SOC.
*/
#ifdef CONFIG_VF610
#define ECC_OFFSET 4
#else
#define ECC_OFFSET 7
#endif
struct vf610_nfc {
struct mtd_info *mtd;
struct nand_chip chip;
void __iomem *regs;
uint column;
int spareonly;
int page_sz;
/* Status and ID are in alternate locations. */
int alt_buf;
#define ALT_BUF_ID 1
#define ALT_BUF_STAT 2
struct clk *clk;
};
#define mtd_to_nfc(_mtd) \
(struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 11,
.len = 4,
.veroffs = 15,
.maxblocks = 4,
.pattern = mirror_pattern,
};
static struct nand_ecclayout vf610_nfc_ecc45 = {
.eccbytes = 45,
.eccpos = {19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63},
.oobfree = {
{.offset = 8,
.length = 11} }
};
static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
return readl(nfc->regs + reg);
}
static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
writel(val, nfc->regs + reg);
}
static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
{
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
}
static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
{
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
}
static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
u32 mask, u32 shift, u32 val)
{
vf610_nfc_write(mtd, reg,
(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
}
static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
{
/*
* Use this accessor for the interal SRAM buffers. On ARM we can
* treat the SRAM buffer as if its memory, hence use memcpy
*/
memcpy(dst, src, n);
}
/* Clear flags for upcoming command */
static inline void vf610_nfc_clear_status(void __iomem *regbase)
{
void __iomem *reg = regbase + NFC_IRQ_STATUS;
u32 tmp = __raw_readl(reg);
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
__raw_writel(tmp, reg);
}
/* Wait for complete operation */
static inline void vf610_nfc_done(struct mtd_info *mtd)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
uint start;
/*
* Barrier is needed after this write. This write need
* to be done before reading the next register the first
* time.
* vf610_nfc_set implicates such a barrier by using writel
* to write to the register.
*/
vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
start = get_timer(0);
while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
if (get_timer(start) > NFC_TIMEOUT) {
printf("Timeout while waiting for !BUSY.\n");
return;
}
}
vf610_nfc_clear_status(nfc->regs);
}
static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
{
u32 flash_id;
if (col < 4) {
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
return (flash_id >> (3-col)*8) & 0xff;
} else {
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
return flash_id >> 24;
}
}
static u8 vf610_nfc_get_status(struct mtd_info *mtd)
{
return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
}
/* Single command */
static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
u32 cmd_code)
{
void __iomem *reg = regbase + NFC_FLASH_CMD2;
u32 tmp;
vf610_nfc_clear_status(regbase);
tmp = __raw_readl(reg);
tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
tmp |= cmd_code << CMD_CODE_SHIFT;
__raw_writel(tmp, reg);
}
/* Two commands */
static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
u32 cmd_byte2, u32 cmd_code)
{
void __iomem *reg = regbase + NFC_FLASH_CMD1;
u32 tmp;
vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
tmp = __raw_readl(reg);
tmp &= ~CMD_BYTE2_MASK;
tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
__raw_writel(tmp, reg);
}
static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
{
if (column != -1) {
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
if (nfc->chip.options | NAND_BUSWIDTH_16)
column = column/2;
vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
COL_ADDR_SHIFT, column);
}
if (page != -1)
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
ROW_ADDR_SHIFT, page);
}
static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
{
__raw_writel(size, regbase + NFC_SECTOR_SIZE);
}
/* Send command to NAND chip */
static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
int column, int page)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
nfc->column = max(column, 0);
nfc->spareonly = 0;
nfc->alt_buf = 0;
switch (command) {
case NAND_CMD_SEQIN:
/* Use valid column/page from preread... */
vf610_nfc_addr_cycle(mtd, column, page);
/*
* SEQIN => data => PAGEPROG sequence is done by the controller
* hence we do not need to issue the command here...
*/
return;
case NAND_CMD_PAGEPROG:
vf610_nfc_transfer_size(nfc->regs, nfc->page_sz);
vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
command, PROGRAM_PAGE_CMD_CODE);
break;
case NAND_CMD_RESET:
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
break;
case NAND_CMD_READOOB:
nfc->spareonly = 1;
case NAND_CMD_READ0:
column = 0;
vf610_nfc_transfer_size(nfc->regs, nfc->page_sz);
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
vf610_nfc_addr_cycle(mtd, column, page);
break;
case NAND_CMD_ERASE1:
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_commands(nfc->regs, command,
NAND_CMD_ERASE2, ERASE_CMD_CODE);
vf610_nfc_addr_cycle(mtd, column, page);
break;
case NAND_CMD_READID:
nfc->alt_buf = ALT_BUF_ID;
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
break;
case NAND_CMD_STATUS:
nfc->alt_buf = ALT_BUF_STAT;
vf610_nfc_transfer_size(nfc->regs, 0);
vf610_nfc_send_command(nfc->regs, command,
STATUS_READ_CMD_CODE);
break;
default:
return;
}
vf610_nfc_done(mtd);
}
static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
int len)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
len = min(mtd->oobsize, (uint)len);
if (len > 0)
vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len);
}
/* Read data from NFC buffers */
static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
uint c = nfc->column;
uint l;
/* Handle main area */
if (!nfc->spareonly) {
l = min((uint)len, mtd->writesize - c);
nfc->column += l;
if (!nfc->alt_buf)
vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c,
l);
else
if (nfc->alt_buf & ALT_BUF_ID)
*buf = vf610_nfc_get_id(mtd, c);
else
*buf = vf610_nfc_get_status(mtd);
buf += l;
len -= l;
}
/* Handle spare area access */
if (len) {
nfc->column += len;
vf610_nfc_read_spare(mtd, buf, len);
}
}
/* Write data to NFC buffers */
static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
int len)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
uint c = nfc->column;
uint l;
l = min((uint)len, mtd->writesize + mtd->oobsize - c);
nfc->column += l;
vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
}
/* Read byte from NFC buffers */
static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
{
u8 tmp;
vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
return tmp;
}
/* Read word from NFC buffers */
static u16 vf610_nfc_read_word(struct mtd_info *mtd)
{
u16 tmp;
vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
return tmp;
}
/* If not provided, upper layers apply a fixed delay. */
static int vf610_nfc_dev_ready(struct mtd_info *mtd)
{
/* NFC handles R/B internally; always ready. */
return 1;
}
/*
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
*/
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
{
#ifdef CONFIG_VF610
u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
if (chip == 0)
tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
else if (chip == 1)
tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;
vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
#endif
}
/* Count the number of 0's in buff upto max_bits */
static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
{
uint32_t *buff32 = (uint32_t *)buff;
int k, written_bits = 0;
for (k = 0; k < (size / 4); k++) {
written_bits += hweight32(~buff32[k]);
if (written_bits > max_bits)
break;
}
return written_bits;
}
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
{
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
u8 ecc_status;
u8 ecc_count;
int flip;
ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
ecc_count = ecc_status & ECC_ERR_COUNT;
if (!(ecc_status & ECC_STATUS_MASK))
return ecc_count;
/* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);
/* ECC failed. */
if (flip > ecc_count)
return -1;
/* Erased page. */
memset(dat, 0xff, nfc->chip.ecc.size);
return 0;
}
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int eccsize = chip->ecc.size;
int stat;
uint8_t *p = buf;
vf610_nfc_read_buf(mtd, p, eccsize);
if (oob_required)
vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
stat = vf610_nfc_correct_data(mtd, p);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
return 0;
}
/*
* ECC will be calculated automatically
*/
static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
vf610_nfc_write_buf(mtd, buf, mtd->writesize);
if (oob_required)
vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
struct vf610_nfc_config {
int hardware_ecc;
int width;
int flash_bbt;
};
static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
{
struct mtd_info *mtd = &nand_info[devnum];
struct nand_chip *chip;
struct vf610_nfc *nfc;
int err = 0;
struct vf610_nfc_config cfg = {
.hardware_ecc = 1,
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
.width = 16,
#else
.width = 8,
#endif
.flash_bbt = 1,
};
nfc = malloc(sizeof(*nfc));
if (!nfc) {
printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
return -ENOMEM;
}
chip = &nfc->chip;
nfc->regs = addr;
mtd->priv = chip;
chip->priv = nfc;
if (cfg.width == 16) {
chip->options |= NAND_BUSWIDTH_16;
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
} else {
chip->options &= ~NAND_BUSWIDTH_16;
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
}
/* Disable subpage writes as we do not provide ecc->hwctl */
chip->options |= NAND_NO_SUBPAGE_WRITE;
chip->dev_ready = vf610_nfc_dev_ready;
chip->cmdfunc = vf610_nfc_command;
chip->read_byte = vf610_nfc_read_byte;
chip->read_word = vf610_nfc_read_word;
chip->read_buf = vf610_nfc_read_buf;
chip->write_buf = vf610_nfc_write_buf;
chip->select_chip = vf610_nfc_select_chip;
/* Bad block options. */
if (cfg.flash_bbt)
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;
/* Default to software ECC until flash ID. */
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
nfc->page_sz = PAGE_2K + OOB_64;
nfc->page_sz += cfg.width == 16 ? 1 : 0;
/* Set configuration register. */
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
/* Enable Idle IRQ */
vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);
/* PAGE_CNT = 1 */
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
CONFIG_PAGE_CNT_SHIFT, 1);
/* Set ECC_STATUS offset */
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_SRAM_ADDR_MASK,
CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
err = -ENXIO;
goto error;
}
chip->ecc.mode = NAND_ECC_SOFT; /* default */
nfc->page_sz = mtd->writesize + mtd->oobsize;
/* Single buffer only, max 256 OOB minus ECC status */
if (nfc->page_sz > PAGE_2K + 256 - 8) {
dev_err(nfc->dev, "Unsupported flash size\n");
err = -ENXIO;
goto error;
}
nfc->page_sz += cfg.width == 16 ? 1 : 0;
if (cfg.hardware_ecc) {
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
err = -ENXIO;
goto error;
}
chip->ecc.layout = &vf610_nfc_ecc45;
/* propagate ecc.layout to mtd_info */
mtd->ecclayout = chip->ecc.layout;
chip->ecc.read_page = vf610_nfc_read_page;
chip->ecc.write_page = vf610_nfc_write_page;
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.bytes = 45;
chip->ecc.size = PAGE_2K;
chip->ecc.strength = 24;
/* set ECC mode to 45 bytes OOB with 24 bits correction */
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
CONFIG_ECC_MODE_MASK,
CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);
/* Enable ECC_STATUS */
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
}
/* second phase scan */
err = nand_scan_tail(mtd);
if (err)
return err;
err = nand_register(devnum);
if (err)
return err;
return 0;
error:
return err;
}
void board_nand_init(void)
{
int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
if (err)
printf("VF610 NAND init failed (err %d)\n", err);
}
|