1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
|
/*
* (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
* (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
* (C) Copyright 2008 Armadeus Systems nc
* (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
* (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#include <netdev.h>
#include <miiphy.h>
#include "fec_mxc.h"
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/imx-common/sys_proto.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <linux/compiler.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Timeout the transfer after 5 mS. This is usually a bit more, since
* the code in the tightloops this timeout is used in adds some overhead.
*/
#define FEC_XFER_TIMEOUT 5000
/*
* The standard 32-byte DMA alignment does not work on mx6solox, which requires
* 64-byte alignment in the DMA RX FEC buffer.
* Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
* satisfies the alignment on other SoCs (32-bytes)
*/
#define FEC_DMA_RX_MINALIGN 64
#ifndef CONFIG_MII
#error "CONFIG_MII has to be defined!"
#endif
#ifndef CONFIG_FEC_XCV_TYPE
#define CONFIG_FEC_XCV_TYPE MII100
#endif
/*
* The i.MX28 operates with packets in big endian. We need to swap them before
* sending and after receiving.
*/
#ifdef CONFIG_MX28
#define CONFIG_FEC_MXC_SWAP_PACKET
#endif
#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
/* Check various alignment issues at compile time */
#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
#error "ARCH_DMA_MINALIGN must be multiple of 16!"
#endif
#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
(PKTALIGN % ARCH_DMA_MINALIGN != 0))
#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
#endif
#undef DEBUG
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
static void swap_packet(uint32_t *packet, int length)
{
int i;
for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
packet[i] = __swab32(packet[i]);
}
#endif
/*
* MII-interface related functions
*/
static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr,
uint8_t regAddr)
{
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint32_t start;
int val;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
writel(FEC_IEVENT_MII, ð->ievent);
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
phy | reg, ð->mii_data);
/*
* wait for the related interrupt
*/
start = get_timer(0);
while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
printf("Read MDIO failed...\n");
return -1;
}
}
/*
* clear mii interrupt bit
*/
writel(FEC_IEVENT_MII, ð->ievent);
/*
* it's now safe to read the PHY's register
*/
val = (unsigned short)readl(ð->mii_data);
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
regAddr, val);
return val;
}
static void fec_mii_setspeed(struct ethernet_regs *eth)
{
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
* and do not drop the Preamble.
*
* The i.MX28 and i.MX6 types have another field in the MSCR (aka
* MII_SPEED) register that defines the MDIO output hold time. Earlier
* versions are RAZ there, so just ignore the difference and write the
* register always.
* The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
* HOLDTIME + 1 is the number of clk cycles the fec is holding the
* output.
* The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
* Given that ceil(clkrate / 5000000) <= 64, the calculation for
* holdtime cannot result in a value greater than 3.
*/
u32 pclk = imx_get_fecclk();
u32 speed = DIV_ROUND_UP(pclk, 5000000);
u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
#ifdef FEC_QUIRK_ENET_MAC
speed--;
#endif
writel(speed << 1 | hold << 8, ð->mii_speed);
debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed));
}
static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr,
uint8_t regAddr, uint16_t data)
{
uint32_t reg; /* convenient holder for the PHY register */
uint32_t phy; /* convenient holder for the PHY */
uint32_t start;
reg = regAddr << FEC_MII_DATA_RA_SHIFT;
phy = phyAddr << FEC_MII_DATA_PA_SHIFT;
writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
FEC_MII_DATA_TA | phy | reg | data, ð->mii_data);
/*
* wait for the MII interrupt
*/
start = get_timer(0);
while (!(readl(ð->ievent) & FEC_IEVENT_MII)) {
if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
printf("Write MDIO failed...\n");
return -1;
}
}
/*
* clear MII interrupt bit
*/
writel(FEC_IEVENT_MII, ð->ievent);
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr,
regAddr, data);
return 0;
}
static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr,
int regAddr)
{
return fec_mdio_read(bus->priv, phyAddr, regAddr);
}
static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr,
int regAddr, u16 data)
{
return fec_mdio_write(bus->priv, phyAddr, regAddr, data);
}
#ifndef CONFIG_PHYLIB
static int miiphy_restart_aneg(struct eth_device *dev)
{
int ret = 0;
#if !defined(CONFIG_FEC_MXC_NO_ANEG)
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct ethernet_regs *eth = fec->bus->priv;
/*
* Wake up from sleep if necessary
* Reset PHY, then delay 300ns
*/
#ifdef CONFIG_MX27
fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
#endif
fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
udelay(1000);
/*
* Set the auto-negotiation advertisement register bits
*/
fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
LPA_100FULL | LPA_100HALF | LPA_10FULL |
LPA_10HALF | PHY_ANLPAR_PSB_802_3);
fec_mdio_write(eth, fec->phy_id, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
if (fec->mii_postcall)
ret = fec->mii_postcall(fec->phy_id);
#endif
return ret;
}
#ifndef CONFIG_FEC_FIXED_SPEED
static int miiphy_wait_aneg(struct eth_device *dev)
{
uint32_t start;
int status;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct ethernet_regs *eth = fec->bus->priv;
/*
* Wait for AN completion
*/
start = get_timer(0);
do {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("%s: Autonegotiation timeout\n", dev->name);
return -1;
}
status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
if (status < 0) {
printf("%s: Autonegotiation failed. status: %d\n",
dev->name, status);
return -1;
}
} while (!(status & BMSR_LSTATUS));
return 0;
}
#endif /* CONFIG_FEC_FIXED_SPEED */
#endif
static int fec_rx_task_enable(struct fec_priv *fec)
{
writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
return 0;
}
static int fec_rx_task_disable(struct fec_priv *fec)
{
return 0;
}
static int fec_tx_task_enable(struct fec_priv *fec)
{
writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
return 0;
}
static int fec_tx_task_disable(struct fec_priv *fec)
{
return 0;
}
/**
* Initialize receive task's buffer descriptors
* @param[in] fec all we know about the device yet
* @param[in] count receive buffer count to be allocated
* @param[in] dsize desired size of each receive buffer
* @return 0 on success
*
* Init all RX descriptors to default values.
*/
static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
{
uint32_t size;
uint8_t *data;
int i;
/*
* Reload the RX descriptors with default values and wipe
* the RX buffers.
*/
size = roundup(dsize, ARCH_DMA_MINALIGN);
for (i = 0; i < count; i++) {
data = (uint8_t *)fec->rbd_base[i].data_pointer;
memset(data, 0, dsize);
flush_dcache_range((uint32_t)data, (uint32_t)data + size);
fec->rbd_base[i].status = FEC_RBD_EMPTY;
fec->rbd_base[i].data_length = 0;
}
/* Mark the last RBD to close the ring. */
fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
fec->rbd_index = 0;
flush_dcache_range((unsigned)fec->rbd_base,
(unsigned)fec->rbd_base + size);
}
/**
* Initialize transmit task's buffer descriptors
* @param[in] fec all we know about the device yet
*
* Transmit buffers are created externally. We only have to init the BDs here.\n
* Note: There is a race condition in the hardware. When only one BD is in
* use it must be marked with the WRAP bit to use it for every transmitt.
* This bit in combination with the READY bit results into double transmit
* of each data buffer. It seems the state machine checks READY earlier then
* resetting it after the first transfer.
* Using two BDs solves this issue.
*/
static void fec_tbd_init(struct fec_priv *fec)
{
unsigned addr = (unsigned)fec->tbd_base;
unsigned size = roundup(2 * sizeof(struct fec_bd),
ARCH_DMA_MINALIGN);
memset(fec->tbd_base, 0, size);
fec->tbd_base[0].status = 0;
fec->tbd_base[1].status = FEC_TBD_WRAP;
fec->tbd_index = 0;
flush_dcache_range(addr, addr + size);
}
/**
* Mark the given read buffer descriptor as free
* @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
* @param[in] pRbd buffer descriptor to mark free again
*/
static void fec_rbd_clean(int last, struct fec_bd *pRbd)
{
unsigned short flags = FEC_RBD_EMPTY;
if (last)
flags |= FEC_RBD_WRAP;
writew(flags, &pRbd->status);
writew(0, &pRbd->data_length);
}
static int fec_get_hwaddr(struct eth_device *dev, int dev_id,
unsigned char *mac)
{
imx_get_mac_from_fuse(dev_id, mac);
return !is_valid_ethaddr(mac);
}
static int fec_set_hwaddr(struct eth_device *dev)
{
uchar *mac = dev->enetaddr;
struct fec_priv *fec = (struct fec_priv *)dev->priv;
writel(0, &fec->eth->iaddr1);
writel(0, &fec->eth->iaddr2);
writel(0, &fec->eth->gaddr1);
writel(0, &fec->eth->gaddr2);
/*
* Set physical address
*/
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
&fec->eth->paddr1);
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
return 0;
}
/*
* Do initial configuration of the FEC registers
*/
static void fec_reg_setup(struct fec_priv *fec)
{
uint32_t rcntrl;
/*
* Set interrupt mask register
*/
writel(0x00000000, &fec->eth->imask);
/*
* Clear FEC-Lite interrupt event register(IEVENT)
*/
writel(0xffffffff, &fec->eth->ievent);
/*
* Set FEC-Lite receive control register(R_CNTRL):
*/
/* Start with frame length = 1518, common for all modes. */
rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
if (fec->xcv_type != SEVENWIRE) /* xMII modes */
rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
if (fec->xcv_type == RGMII)
rcntrl |= FEC_RCNTRL_RGMII;
else if (fec->xcv_type == RMII)
rcntrl |= FEC_RCNTRL_RMII;
writel(rcntrl, &fec->eth->r_cntrl);
}
/**
* Start the FEC engine
* @param[in] dev Our device to handle
*/
static int fec_open(struct eth_device *edev)
{
struct fec_priv *fec = (struct fec_priv *)edev->priv;
int speed;
uint32_t addr, size;
int i;
debug("fec_open: fec_open(dev)\n");
/* full-duplex, heartbeat disabled */
writel(1 << 2, &fec->eth->x_cntrl);
fec->rbd_index = 0;
/* Invalidate all descriptors */
for (i = 0; i < FEC_RBD_NUM - 1; i++)
fec_rbd_clean(0, &fec->rbd_base[i]);
fec_rbd_clean(1, &fec->rbd_base[i]);
/* Flush the descriptors into RAM */
size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
ARCH_DMA_MINALIGN);
addr = (uint32_t)fec->rbd_base;
flush_dcache_range(addr, addr + size);
#ifdef FEC_QUIRK_ENET_MAC
/* Enable ENET HW endian SWAP */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
&fec->eth->ecntrl);
/* Enable ENET store and forward mode */
writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
&fec->eth->x_wmrk);
#endif
/*
* Enable FEC-Lite controller
*/
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
&fec->eth->ecntrl);
#if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
udelay(100);
/*
* setup the MII gasket for RMII mode
*/
/* disable the gasket */
writew(0, &fec->eth->miigsk_enr);
/* wait for the gasket to be disabled */
while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
udelay(2);
/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
/* re-enable the gasket */
writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
/* wait until MII gasket is ready */
int max_loops = 10;
while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
if (--max_loops <= 0) {
printf("WAIT for MII Gasket ready timed out\n");
break;
}
}
#endif
#ifdef CONFIG_PHYLIB
{
/* Start up the PHY */
int ret = phy_startup(fec->phydev);
if (ret) {
printf("Could not initialize PHY %s\n",
fec->phydev->dev->name);
return ret;
}
speed = fec->phydev->speed;
}
#elif CONFIG_FEC_FIXED_SPEED
speed = CONFIG_FEC_FIXED_SPEED;
#else
miiphy_wait_aneg(edev);
speed = miiphy_speed(edev->name, fec->phy_id);
miiphy_duplex(edev->name, fec->phy_id);
#endif
#ifdef FEC_QUIRK_ENET_MAC
{
u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
if (speed == _1000BASET)
ecr |= FEC_ECNTRL_SPEED;
else if (speed != _100BASET)
rcr |= FEC_RCNTRL_RMII_10T;
writel(ecr, &fec->eth->ecntrl);
writel(rcr, &fec->eth->r_cntrl);
}
#endif
debug("%s:Speed=%i\n", __func__, speed);
/*
* Enable SmartDMA receive task
*/
fec_rx_task_enable(fec);
udelay(100000);
return 0;
}
static int fec_init(struct eth_device *dev, bd_t* bd)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop;
int i;
/* Initialize MAC address */
fec_set_hwaddr(dev);
/*
* Setup transmit descriptors, there are two in total.
*/
fec_tbd_init(fec);
/* Setup receive descriptors. */
fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
fec_reg_setup(fec);
if (fec->xcv_type != SEVENWIRE)
fec_mii_setspeed(fec->bus->priv);
/*
* Set Opcode/Pause Duration Register
*/
writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
writel(0x2, &fec->eth->x_wmrk);
/*
* Set multicast address filter
*/
writel(0x00000000, &fec->eth->gaddr1);
writel(0x00000000, &fec->eth->gaddr2);
/* Do not access reserved register for i.MX6UL */
if (!is_mx6ul()) {
/* clear MIB RAM */
for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
writel(0, i);
/* FIFO receive start register */
writel(0x520, &fec->eth->r_fstart);
}
/* size and address of each buffer */
writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
writel((uint32_t)fec->tbd_base, &fec->eth->etdsr);
writel((uint32_t)fec->rbd_base, &fec->eth->erdsr);
#ifndef CONFIG_PHYLIB
if (fec->xcv_type != SEVENWIRE)
miiphy_restart_aneg(dev);
#endif
fec_open(dev);
return 0;
}
/**
* Halt the FEC engine
* @param[in] dev Our device to handle
*/
static void fec_halt(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
int counter = 0xffff;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
debug("eth_halt: wait for stop regs\n");
/*
* wait for graceful stop to register
*/
while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
udelay(1);
/*
* Disable SmartDMA tasks
*/
fec_tx_task_disable(fec);
fec_rx_task_disable(fec);
/*
* Disable the Ethernet Controller
* Note: this will also reset the BD index counter!
*/
writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
&fec->eth->ecntrl);
fec->rbd_index = 0;
fec->tbd_index = 0;
debug("eth_halt: done\n");
}
/**
* Transmit one frame
* @param[in] dev Our ethernet device to handle
* @param[in] packet Pointer to the data to be transmitted
* @param[in] length Data count in bytes
* @return 0 on success
*/
static int fec_send(struct eth_device *dev, void *packet, int length)
{
unsigned int status;
uint32_t size, end;
uint32_t addr;
int timeout = FEC_XFER_TIMEOUT;
int ret = 0;
/*
* This routine transmits one frame. This routine only accepts
* 6-byte Ethernet addresses.
*/
struct fec_priv *fec = (struct fec_priv *)dev->priv;
/*
* Check for valid length of data.
*/
if ((length > 1500) || (length <= 0)) {
printf("Payload (%d) too large\n", length);
return -1;
}
/*
* Setup the transmit buffer. We are always using the first buffer for
* transmission, the second will be empty and only used to stop the DMA
* engine. We also flush the packet to RAM here to avoid cache trouble.
*/
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet((uint32_t *)packet, length);
#endif
addr = (uint32_t)packet;
end = roundup(addr + length, ARCH_DMA_MINALIGN);
addr &= ~(ARCH_DMA_MINALIGN - 1);
flush_dcache_range(addr, end);
writew(length, &fec->tbd_base[fec->tbd_index].data_length);
writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer);
/*
* update BD's status now
* This block:
* - is always the last in a chain (means no chain)
* - should transmitt the CRC
* - might be the last BD in the list, so the address counter should
* wrap (-> keep the WRAP flag)
*/
status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
writew(status, &fec->tbd_base[fec->tbd_index].status);
/*
* Flush data cache. This code flushes both TX descriptors to RAM.
* After this code, the descriptors will be safely in RAM and we
* can start DMA.
*/
size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
addr = (uint32_t)fec->tbd_base;
flush_dcache_range(addr, addr + size);
/*
* Below we read the DMA descriptor's last four bytes back from the
* DRAM. This is important in order to make sure that all WRITE
* operations on the bus that were triggered by previous cache FLUSH
* have completed.
*
* Otherwise, on MX28, it is possible to observe a corruption of the
* DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
* for the bus structure of MX28. The scenario is as follows:
*
* 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
* to DRAM due to flush_dcache_range()
* 2) ARM core writes the FEC registers via AHB_ARB2
* 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
*
* Note that 2) does sometimes finish before 1) due to reordering of
* WRITE accesses on the AHB bus, therefore triggering 3) before the
* DMA descriptor is fully written into DRAM. This results in occasional
* corruption of the DMA descriptor.
*/
readl(addr + size - 4);
/*
* Enable SmartDMA transmit task
*/
fec_tx_task_enable(fec);
/*
* Wait until frame is sent. On each turn of the wait cycle, we must
* invalidate data cache to see what's really in RAM. Also, we need
* barrier here.
*/
while (--timeout) {
if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
break;
}
if (!timeout) {
ret = -EINVAL;
goto out;
}
/*
* The TDAR bit is cleared when the descriptors are all out from TX
* but on mx6solox we noticed that the READY bit is still not cleared
* right after TDAR.
* These are two distinct signals, and in IC simulation, we found that
* TDAR always gets cleared prior than the READY bit of last BD becomes
* cleared.
* In mx6solox, we use a later version of FEC IP. It looks like that
* this intrinsic behaviour of TDAR bit has changed in this newer FEC
* version.
*
* Fix this by polling the READY bit of BD after the TDAR polling,
* which covers the mx6solox case and does not harm the other SoCs.
*/
timeout = FEC_XFER_TIMEOUT;
while (--timeout) {
invalidate_dcache_range(addr, addr + size);
if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
FEC_TBD_READY))
break;
}
if (!timeout)
ret = -EINVAL;
out:
debug("fec_send: status 0x%x index %d ret %i\n",
readw(&fec->tbd_base[fec->tbd_index].status),
fec->tbd_index, ret);
/* for next transmission use the other buffer */
if (fec->tbd_index)
fec->tbd_index = 0;
else
fec->tbd_index = 1;
return ret;
}
/**
* Pull one frame from the card
* @param[in] dev Our ethernet device to handle
* @return Length of packet read
*/
static int fec_recv(struct eth_device *dev)
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
unsigned long ievent;
int frame_length, len = 0;
uint16_t bd_status;
uint32_t addr, size, end;
int i;
ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
/*
* Check if any critical events have happened
*/
ievent = readl(&fec->eth->ievent);
writel(ievent, &fec->eth->ievent);
debug("fec_recv: ievent 0x%lx\n", ievent);
if (ievent & FEC_IEVENT_BABR) {
fec_halt(dev);
fec_init(dev, fec->bd);
printf("some error: 0x%08lx\n", ievent);
return 0;
}
if (ievent & FEC_IEVENT_HBERR) {
/* Heartbeat error */
writel(0x00000001 | readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
}
if (ievent & FEC_IEVENT_GRA) {
/* Graceful stop complete */
if (readl(&fec->eth->x_cntrl) & 0x00000001) {
fec_halt(dev);
writel(~0x00000001 & readl(&fec->eth->x_cntrl),
&fec->eth->x_cntrl);
fec_init(dev, fec->bd);
}
}
/*
* Read the buffer status. Before the status can be read, the data cache
* must be invalidated, because the data in RAM might have been changed
* by DMA. The descriptors are properly aligned to cachelines so there's
* no need to worry they'd overlap.
*
* WARNING: By invalidating the descriptor here, we also invalidate
* the descriptors surrounding this one. Therefore we can NOT change the
* contents of this descriptor nor the surrounding ones. The problem is
* that in order to mark the descriptor as processed, we need to change
* the descriptor. The solution is to mark the whole cache line when all
* descriptors in the cache line are processed.
*/
addr = (uint32_t)rbd;
addr &= ~(ARCH_DMA_MINALIGN - 1);
size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
invalidate_dcache_range(addr, addr + size);
bd_status = readw(&rbd->status);
debug("fec_recv: status 0x%x\n", bd_status);
if (!(bd_status & FEC_RBD_EMPTY)) {
if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
((readw(&rbd->data_length) - 4) > 14)) {
/*
* Get buffer address and size
*/
addr = readl(&rbd->data_pointer);
frame_length = readw(&rbd->data_length) - 4;
/*
* Invalidate data cache over the buffer
*/
end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
addr &= ~(ARCH_DMA_MINALIGN - 1);
invalidate_dcache_range(addr, end);
/*
* Fill the buffer and pass it to upper layers
*/
#ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet((uint32_t *)addr, frame_length);
#endif
memcpy(buff, (char *)addr, frame_length);
net_process_received_packet(buff, frame_length);
len = frame_length;
} else {
if (bd_status & FEC_RBD_ERR)
printf("error frame: 0x%08x 0x%08x\n",
addr, bd_status);
}
/*
* Free the current buffer, restart the engine and move forward
* to the next buffer. Here we check if the whole cacheline of
* descriptors was already processed and if so, we mark it free
* as whole.
*/
size = RXDESC_PER_CACHELINE - 1;
if ((fec->rbd_index & size) == size) {
i = fec->rbd_index - size;
addr = (uint32_t)&fec->rbd_base[i];
for (; i <= fec->rbd_index ; i++) {
fec_rbd_clean(i == (FEC_RBD_NUM - 1),
&fec->rbd_base[i]);
}
flush_dcache_range(addr,
addr + ARCH_DMA_MINALIGN);
}
fec_rx_task_enable(fec);
fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
}
debug("fec_recv: stop\n");
return len;
}
static void fec_set_dev_name(char *dest, int dev_id)
{
sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
}
static int fec_alloc_descs(struct fec_priv *fec)
{
unsigned int size;
int i;
uint8_t *data;
/* Allocate TX descriptors. */
size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
if (!fec->tbd_base)
goto err_tx;
/* Allocate RX descriptors. */
size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
if (!fec->rbd_base)
goto err_rx;
memset(fec->rbd_base, 0, size);
/* Allocate RX buffers. */
/* Maximum RX buffer size. */
size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
for (i = 0; i < FEC_RBD_NUM; i++) {
data = memalign(FEC_DMA_RX_MINALIGN, size);
if (!data) {
printf("%s: error allocating rxbuf %d\n", __func__, i);
goto err_ring;
}
memset(data, 0, size);
fec->rbd_base[i].data_pointer = (uint32_t)data;
fec->rbd_base[i].status = FEC_RBD_EMPTY;
fec->rbd_base[i].data_length = 0;
/* Flush the buffer to memory. */
flush_dcache_range((uint32_t)data, (uint32_t)data + size);
}
/* Mark the last RBD to close the ring. */
fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
fec->rbd_index = 0;
fec->tbd_index = 0;
return 0;
err_ring:
for (; i >= 0; i--)
free((void *)fec->rbd_base[i].data_pointer);
free(fec->rbd_base);
err_rx:
free(fec->tbd_base);
err_tx:
return -ENOMEM;
}
static void fec_free_descs(struct fec_priv *fec)
{
int i;
for (i = 0; i < FEC_RBD_NUM; i++)
free((void *)fec->rbd_base[i].data_pointer);
free(fec->rbd_base);
free(fec->tbd_base);
}
#ifdef CONFIG_PHYLIB
int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
struct mii_dev *bus, struct phy_device *phydev)
#else
static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
struct mii_dev *bus, int phy_id)
#endif
{
struct eth_device *edev;
struct fec_priv *fec;
unsigned char ethaddr[6];
uint32_t start;
int ret = 0;
/* create and fill edev struct */
edev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!edev) {
puts("fec_mxc: not enough malloc memory for eth_device\n");
ret = -ENOMEM;
goto err1;
}
fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
if (!fec) {
puts("fec_mxc: not enough malloc memory for fec_priv\n");
ret = -ENOMEM;
goto err2;
}
memset(edev, 0, sizeof(*edev));
memset(fec, 0, sizeof(*fec));
ret = fec_alloc_descs(fec);
if (ret)
goto err3;
edev->priv = fec;
edev->init = fec_init;
edev->send = fec_send;
edev->recv = fec_recv;
edev->halt = fec_halt;
edev->write_hwaddr = fec_set_hwaddr;
fec->eth = (struct ethernet_regs *)base_addr;
fec->bd = bd;
fec->xcv_type = CONFIG_FEC_XCV_TYPE;
/* Reset chip. */
writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
start = get_timer(0);
while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
printf("FEC MXC: Timeout resetting chip\n");
goto err4;
}
udelay(10);
}
fec_reg_setup(fec);
fec_set_dev_name(edev->name, dev_id);
fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fec->bus = bus;
fec_mii_setspeed(bus->priv);
#ifdef CONFIG_PHYLIB
fec->phydev = phydev;
phy_connect_dev(phydev, edev);
/* Configure phy */
phy_config(phydev);
#else
fec->phy_id = phy_id;
#endif
eth_register(edev);
if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) {
debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr);
memcpy(edev->enetaddr, ethaddr, 6);
if (!getenv("ethaddr"))
eth_setenv_enetaddr("ethaddr", ethaddr);
}
return ret;
err4:
fec_free_descs(fec);
err3:
free(fec);
err2:
free(edev);
err1:
return ret;
}
struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id)
{
struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
struct mii_dev *bus;
int ret;
bus = mdio_alloc();
if (!bus) {
printf("mdio_alloc failed\n");
return NULL;
}
bus->read = fec_phy_read;
bus->write = fec_phy_write;
bus->priv = eth;
fec_set_dev_name(bus->name, dev_id);
ret = mdio_register(bus);
if (ret) {
printf("mdio_register failed\n");
free(bus);
return NULL;
}
fec_mii_setspeed(eth);
return bus;
}
int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
{
uint32_t base_mii;
struct mii_dev *bus = NULL;
#ifdef CONFIG_PHYLIB
struct phy_device *phydev = NULL;
#endif
int ret;
#ifdef CONFIG_MX28
/*
* The i.MX28 has two ethernet interfaces, but they are not equal.
* Only the first one can access the MDIO bus.
*/
base_mii = MXS_ENET0_BASE;
#else
base_mii = addr;
#endif
debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
bus = fec_get_miibus(base_mii, dev_id);
if (!bus)
return -ENOMEM;
#ifdef CONFIG_PHYLIB
phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
if (!phydev) {
mdio_unregister(bus);
free(bus);
return -ENOMEM;
}
ret = fec_probe(bd, dev_id, addr, bus, phydev);
#else
ret = fec_probe(bd, dev_id, addr, bus, phy_id);
#endif
if (ret) {
#ifdef CONFIG_PHYLIB
free(phydev);
#endif
mdio_unregister(bus);
free(bus);
}
return ret;
}
#ifdef CONFIG_FEC_MXC_PHYADDR
int fecmxc_initialize(bd_t *bd)
{
return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
IMX_FEC_BASE);
}
#endif
#ifndef CONFIG_PHYLIB
int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
{
struct fec_priv *fec = (struct fec_priv *)dev->priv;
fec->mii_postcall = cb;
return 0;
}
#endif
|