1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
// SPDX-License-Identifier: GPL-2.0+
/*
* ENETC ethernet controller driver
* Copyright 2017-2019 NXP
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <asm/io.h>
#include <pci.h>
#include "fsl_enetc.h"
/*
* Bind the device:
* - set a more explicit name on the interface
*/
static int enetc_bind(struct udevice *dev)
{
char name[16];
static int eth_num_devices;
/*
* prefer using PCI function numbers to number interfaces, but these
* are only available if dts nodes are present. For PCI they are
* optional, handle that case too. Just in case some nodes are present
* and some are not, use different naming scheme - enetc-N based on
* PCI function # and enetc#N based on interface count
*/
if (ofnode_valid(dev->node))
sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev)));
else
sprintf(name, "enetc#%u", eth_num_devices++);
device_set_name(dev, name);
return 0;
}
/*
* Probe ENETC driver:
* - initialize port and station interface BARs
*/
static int enetc_probe(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
if (ofnode_valid(dev->node) && !ofnode_is_available(dev->node)) {
enetc_dbg(dev, "interface disabled\n");
return -ENODEV;
}
priv->enetc_txbd = memalign(ENETC_BD_ALIGN,
sizeof(struct enetc_tx_bd) * ENETC_BD_CNT);
priv->enetc_rxbd = memalign(ENETC_BD_ALIGN,
sizeof(union enetc_rx_bd) * ENETC_BD_CNT);
if (!priv->enetc_txbd || !priv->enetc_rxbd) {
/* free should be able to handle NULL, just free all pointers */
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return -ENOMEM;
}
/* initialize register */
priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0);
if (!priv->regs_base) {
enetc_dbg(dev, "failed to map BAR0\n");
return -EINVAL;
}
priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF;
dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY);
return 0;
}
/*
* Remove the driver from an interface:
* - free up allocated memory
*/
static int enetc_remove(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
free(priv->enetc_txbd);
free(priv->enetc_rxbd);
return 0;
}
/* ENETC Port MAC address registers, accepts big-endian format */
static void enetc_set_primary_mac_addr(struct enetc_priv *priv, const u8 *addr)
{
u16 lower = *(const u16 *)(addr + 4);
u32 upper = *(const u32 *)addr;
enetc_write_port(priv, ENETC_PSIPMAR0, upper);
enetc_write_port(priv, ENETC_PSIPMAR1, lower);
}
/* Configure port parameters (# of rings, frame size, enable port) */
static void enetc_enable_si_port(struct enetc_priv *priv)
{
u32 val;
/* set Rx/Tx BDR count */
val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT);
val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT);
enetc_write_port(priv, ENETC_PSICFGR(0), val);
/* set Rx max frame size */
enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE);
/* enable MAC port */
enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN);
/* enable port */
enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN);
/* set SI cache policy */
enetc_write(priv, ENETC_SICAR0,
ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG);
/* enable SI */
enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN);
}
/* returns DMA address for a given buffer index */
static inline u64 enetc_rxb_address(struct udevice *dev, int i)
{
return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i]));
}
/*
* Setup a single Tx BD Ring (ID = 0):
* - set Tx buffer descriptor address
* - set the BD count
* - initialize the producer and consumer index
*/
static void enetc_setup_tx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *tx_bdr = &priv->tx_bdr;
u64 tx_bd_add = (u64)priv->enetc_txbd;
/* used later to advance to the next Tx BD */
tx_bdr->bd_count = ENETC_BD_CNT;
tx_bdr->next_prod_idx = 0;
tx_bdr->next_cons_idx = 0;
tx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR);
tx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR);
/* set Tx BD address */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0,
lower_32_bits(tx_bd_add));
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1,
upper_32_bits(tx_bd_add));
/* set Tx 8 BD count */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR,
tx_bdr->bd_count);
/* reset both producer/consumer indexes */
enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx);
enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx);
/* enable TX ring */
enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN);
}
/*
* Setup a single Rx BD Ring (ID = 0):
* - set Rx buffer descriptors address (one descriptor per buffer)
* - set buffer size as max frame size
* - enable Rx ring
* - reset consumer and producer indexes
* - set buffer for each descriptor
*/
static void enetc_setup_rx_bdr(struct udevice *dev)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rx_bdr = &priv->rx_bdr;
u64 rx_bd_add = (u64)priv->enetc_rxbd;
int i;
/* used later to advance to the next BD produced by ENETC HW */
rx_bdr->bd_count = ENETC_BD_CNT;
rx_bdr->next_prod_idx = 0;
rx_bdr->next_cons_idx = 0;
rx_bdr->cons_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR);
rx_bdr->prod_idx = priv->regs_base +
ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR);
/* set Rx BD address */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0,
lower_32_bits(rx_bd_add));
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1,
upper_32_bits(rx_bd_add));
/* set Rx BD count (multiple of 8) */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR,
rx_bdr->bd_count);
/* set Rx buffer size */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN);
/* fill Rx BD */
memset(priv->enetc_rxbd, 0,
rx_bdr->bd_count * sizeof(union enetc_rx_bd));
for (i = 0; i < rx_bdr->bd_count; i++) {
priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i);
/* each RX buffer must be aligned to 64B */
WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1));
}
/* reset producer (ENETC owned) and consumer (SW owned) index */
enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx);
enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx);
/* enable Rx ring */
enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN);
}
/*
* Start ENETC interface:
* - perform FLR
* - enable access to port and SI registers
* - set mac address
* - setup TX/RX buffer descriptors
* - enable Tx/Rx rings
*/
static int enetc_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct enetc_priv *priv = dev_get_priv(dev);
/* reset and enable the PCI device */
dm_pci_flr(dev);
dm_pci_clrset_config16(dev, PCI_COMMAND, 0,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
if (!is_valid_ethaddr(plat->enetaddr)) {
enetc_dbg(dev, "invalid MAC address, generate random ...\n");
net_random_ethaddr(plat->enetaddr);
}
enetc_set_primary_mac_addr(priv, plat->enetaddr);
enetc_enable_si_port(priv);
/* setup Tx/Rx buffer descriptors */
enetc_setup_tx_bdr(dev);
enetc_setup_rx_bdr(dev);
return 0;
}
/*
* Stop the network interface:
* - just quiesce it, we can wipe all configuration as _start starts from
* scratch each time
*/
static void enetc_stop(struct udevice *dev)
{
/* FLR is sufficient to quiesce the device */
dm_pci_flr(dev);
}
/*
* ENETC transmit packet:
* - check if Tx BD ring is full
* - set buffer/packet address (dma address)
* - set final fragment flag
* - try while producer index equals consumer index or timeout
*/
static int enetc_send(struct udevice *dev, void *packet, int length)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *txr = &priv->tx_bdr;
void *nv_packet = (void *)packet;
int tries = ENETC_POLL_TRIES;
u32 pi, ci;
pi = txr->next_prod_idx;
ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK;
/* Tx ring is full when */
if (((pi + 1) % txr->bd_count) == ci) {
enetc_dbg(dev, "Tx BDR full\n");
return -ETIMEDOUT;
}
enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length,
upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet));
/* prepare Tx BD */
memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd));
priv->enetc_txbd[pi].addr =
cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet));
priv->enetc_txbd[pi].buf_len = cpu_to_le16(length);
priv->enetc_txbd[pi].frm_len = cpu_to_le16(length);
priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F);
dmb();
/* send frame: increment producer index */
pi = (pi + 1) % txr->bd_count;
txr->next_prod_idx = pi;
enetc_write_reg(txr->prod_idx, pi);
while ((--tries >= 0) &&
(pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK)))
udelay(10);
return tries > 0 ? 0 : -ETIMEDOUT;
}
/*
* Receive frame:
* - wait for the next BD to get ready bit set
* - clean up the descriptor
* - move on and indicate to HW that the cleaned BD is available for Rx
*/
static int enetc_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct enetc_priv *priv = dev_get_priv(dev);
struct bd_ring *rxr = &priv->rx_bdr;
int tries = ENETC_POLL_TRIES;
int pi = rxr->next_prod_idx;
int ci = rxr->next_cons_idx;
u32 status;
int len;
u8 rdy;
do {
dmb();
status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus);
/* check if current BD is ready to be consumed */
rdy = ENETC_RXBD_STATUS_R(status);
} while (--tries >= 0 && !rdy);
if (!rdy)
return -EAGAIN;
dmb();
len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len);
*packetp = (uchar *)enetc_rxb_address(dev, pi);
enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len,
ENETC_RXBD_STATUS_ERRORS(status),
upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp));
/* BD clean up and advance to next in ring */
memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd));
priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi);
rxr->next_prod_idx = (pi + 1) % rxr->bd_count;
ci = (ci + 1) % rxr->bd_count;
rxr->next_cons_idx = ci;
dmb();
/* free up the slot in the ring for HW */
enetc_write_reg(rxr->cons_idx, ci);
return len;
}
static const struct eth_ops enetc_ops = {
.start = enetc_start,
.send = enetc_send,
.recv = enetc_recv,
.stop = enetc_stop,
};
U_BOOT_DRIVER(eth_enetc) = {
.name = "enetc_eth",
.id = UCLASS_ETH,
.bind = enetc_bind,
.probe = enetc_probe,
.remove = enetc_remove,
.ops = &enetc_ops,
.priv_auto_alloc_size = sizeof(struct enetc_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};
static struct pci_device_id enetc_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) },
{}
};
U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids);
|