summaryrefslogtreecommitdiff
path: root/drivers/net/keystone_net.c
blob: 33197f95b9e620621a810e4b3f92878a990ad9db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*
 * Ethernet driver for TI K2HK EVM.
 *
 * (C) Copyright 2012-2014
 *     Texas Instruments Incorporated, <www.ti.com>
 *
 * SPDX-License-Identifier:     GPL-2.0+
 */
#include <common.h>
#include <command.h>

#include <net.h>
#include <miiphy.h>
#include <malloc.h>
#include <asm/ti-common/keystone_nav.h>
#include <asm/ti-common/keystone_net.h>

unsigned int emac_open;
static unsigned int sys_has_mdio = 1;

#ifdef KEYSTONE2_EMAC_GIG_ENABLE
#define emac_gigabit_enable(x)	keystone2_eth_gigabit_enable(x)
#else
#define emac_gigabit_enable(x)	/* no gigabit to enable */
#endif

#define RX_BUFF_NUMS	24
#define RX_BUFF_LEN	1520
#define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN

static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16);

struct rx_buff_desc net_rx_buffs = {
	.buff_ptr	= rx_buffs,
	.num_buffs	= RX_BUFF_NUMS,
	.buff_len	= RX_BUFF_LEN,
	.rx_flow	= 22,
};

static void keystone2_eth_mdio_enable(void);

static int gen_get_link_speed(int phy_addr);

/* EMAC Addresses */
static volatile struct mdio_regs	*adap_mdio =
	(struct mdio_regs *)EMAC_MDIO_BASE_ADDR;

int keystone2_eth_read_mac_addr(struct eth_device *dev)
{
	struct eth_priv_t *eth_priv;
	u32 maca = 0;
	u32 macb = 0;

	eth_priv = (struct eth_priv_t *)dev->priv;

	/* Read the e-fuse mac address */
	if (eth_priv->slave_port == 1) {
		maca = __raw_readl(MAC_ID_BASE_ADDR);
		macb = __raw_readl(MAC_ID_BASE_ADDR + 4);
	}

	dev->enetaddr[0] = (macb >>  8) & 0xff;
	dev->enetaddr[1] = (macb >>  0) & 0xff;
	dev->enetaddr[2] = (maca >> 24) & 0xff;
	dev->enetaddr[3] = (maca >> 16) & 0xff;
	dev->enetaddr[4] = (maca >>  8) & 0xff;
	dev->enetaddr[5] = (maca >>  0) & 0xff;

	return 0;
}

static void keystone2_eth_mdio_enable(void)
{
	u_int32_t	clkdiv;

	clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;

	writel((clkdiv & 0xffff) |
	       MDIO_CONTROL_ENABLE |
	       MDIO_CONTROL_FAULT |
	       MDIO_CONTROL_FAULT_ENABLE,
	       &adap_mdio->control);

	while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE)
		;
}

/* Read a PHY register via MDIO inteface. Returns 1 on success, 0 otherwise */
int keystone2_eth_phy_read(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t *data)
{
	int	tmp;

	while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
		;

	writel(MDIO_USERACCESS0_GO |
	       MDIO_USERACCESS0_WRITE_READ |
	       ((reg_num & 0x1f) << 21) |
	       ((phy_addr & 0x1f) << 16),
	       &adap_mdio->useraccess0);

	/* Wait for command to complete */
	while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO)
		;

	if (tmp & MDIO_USERACCESS0_ACK) {
		*data = tmp & 0xffff;
		return 0;
	}

	*data = -1;
	return -1;
}

/*
 * Write to a PHY register via MDIO inteface.
 * Blocks until operation is complete.
 */
int keystone2_eth_phy_write(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t data)
{
	while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
		;

	writel(MDIO_USERACCESS0_GO |
	       MDIO_USERACCESS0_WRITE_WRITE |
	       ((reg_num & 0x1f) << 21) |
	       ((phy_addr & 0x1f) << 16) |
	       (data & 0xffff),
	       &adap_mdio->useraccess0);

	/* Wait for command to complete */
	while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
		;

	return 0;
}

/* PHY functions for a generic PHY */
static int gen_get_link_speed(int phy_addr)
{
	u_int16_t	tmp;

	if ((!keystone2_eth_phy_read(phy_addr, MII_STATUS_REG, &tmp)) &&
	    (tmp & 0x04)) {
		return 0;
	}

	return -1;
}

static void  __attribute__((unused))
	keystone2_eth_gigabit_enable(struct eth_device *dev)
{
	u_int16_t data;
	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;

	if (sys_has_mdio) {
		if (keystone2_eth_phy_read(eth_priv->phy_addr, 0, &data) ||
		    !(data & (1 << 6))) /* speed selection MSB */
			return;
	}

	/*
	 * Check if link detected is giga-bit
	 * If Gigabit mode detected, enable gigbit in MAC
	 */
	writel(readl(DEVICE_EMACSL_BASE(eth_priv->slave_port - 1) +
		     CPGMACSL_REG_CTL) |
	       EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE,
	       DEVICE_EMACSL_BASE(eth_priv->slave_port - 1) + CPGMACSL_REG_CTL);
}

int keystone_sgmii_link_status(int port)
{
	u32 status = 0;

	status = __raw_readl(SGMII_STATUS_REG(port));

	return status & SGMII_REG_STATUS_LINK;
}


int keystone_get_link_status(struct eth_device *dev)
{
	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
	int sgmii_link;
	int link_state = 0;
#if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1
	int j;

	for (j = 0; (j < CONFIG_GET_LINK_STATUS_ATTEMPTS) && (link_state == 0);
	     j++) {
#endif
		sgmii_link =
			keystone_sgmii_link_status(eth_priv->slave_port - 1);

		if (sgmii_link) {
			link_state = 1;

			if (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY)
				if (gen_get_link_speed(eth_priv->phy_addr))
					link_state = 0;
		}
#if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1
	}
#endif
	return link_state;
}

int keystone_sgmii_config(int port, int interface)
{
	unsigned int i, status, mask;
	unsigned int mr_adv_ability, control;

	switch (interface) {
	case SGMII_LINK_MAC_MAC_AUTONEG:
		mr_adv_ability	= (SGMII_REG_MR_ADV_ENABLE |
				   SGMII_REG_MR_ADV_LINK |
				   SGMII_REG_MR_ADV_FULL_DUPLEX |
				   SGMII_REG_MR_ADV_GIG_MODE);
		control		= (SGMII_REG_CONTROL_MASTER |
				   SGMII_REG_CONTROL_AUTONEG);

		break;
	case SGMII_LINK_MAC_PHY:
	case SGMII_LINK_MAC_PHY_FORCED:
		mr_adv_ability	= SGMII_REG_MR_ADV_ENABLE;
		control		= SGMII_REG_CONTROL_AUTONEG;

		break;
	case SGMII_LINK_MAC_MAC_FORCED:
		mr_adv_ability	= (SGMII_REG_MR_ADV_ENABLE |
				   SGMII_REG_MR_ADV_LINK |
				   SGMII_REG_MR_ADV_FULL_DUPLEX |
				   SGMII_REG_MR_ADV_GIG_MODE);
		control		= SGMII_REG_CONTROL_MASTER;

		break;
	case SGMII_LINK_MAC_FIBER:
		mr_adv_ability	= 0x20;
		control		= SGMII_REG_CONTROL_AUTONEG;

		break;
	default:
		mr_adv_ability	= SGMII_REG_MR_ADV_ENABLE;
		control		= SGMII_REG_CONTROL_AUTONEG;
	}

	__raw_writel(0, SGMII_CTL_REG(port));

	/*
	 * Wait for the SerDes pll to lock,
	 * but don't trap if lock is never read
	 */
	for (i = 0; i < 1000; i++)  {
		udelay(2000);
		status = __raw_readl(SGMII_STATUS_REG(port));
		if ((status & SGMII_REG_STATUS_LOCK) != 0)
			break;
	}

	__raw_writel(mr_adv_ability, SGMII_MRADV_REG(port));
	__raw_writel(control, SGMII_CTL_REG(port));


	mask = SGMII_REG_STATUS_LINK;

	if (control & SGMII_REG_CONTROL_AUTONEG)
		mask |= SGMII_REG_STATUS_AUTONEG;

	for (i = 0; i < 1000; i++) {
		status = __raw_readl(SGMII_STATUS_REG(port));
		if ((status & mask) == mask)
			break;
	}

	return 0;
}

int mac_sl_reset(u32 port)
{
	u32 i, v;

	if (port >= DEVICE_N_GMACSL_PORTS)
		return GMACSL_RET_INVALID_PORT;

	/* Set the soft reset bit */
	writel(CPGMAC_REG_RESET_VAL_RESET,
	       DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);

	/* Wait for the bit to clear */
	for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
		v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
		if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
		    CPGMAC_REG_RESET_VAL_RESET)
			return GMACSL_RET_OK;
	}

	/* Timeout on the reset */
	return GMACSL_RET_WARN_RESET_INCOMPLETE;
}

int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg)
{
	u32 v, i;
	int ret = GMACSL_RET_OK;

	if (port >= DEVICE_N_GMACSL_PORTS)
		return GMACSL_RET_INVALID_PORT;

	if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) {
		cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN;
		ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG;
	}

	/* Must wait if the device is undergoing reset */
	for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
		v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
		if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
		    CPGMAC_REG_RESET_VAL_RESET)
			break;
	}

	if (i == DEVICE_EMACSL_RESET_POLL_COUNT)
		return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE;

	writel(cfg->max_rx_len, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN);
	writel(cfg->ctl, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL);

	return ret;
}

int ethss_config(u32 ctl, u32 max_pkt_size)
{
	u32 i;

	/* Max length register */
	writel(max_pkt_size, DEVICE_CPSW_BASE + CPSW_REG_MAXLEN);

	/* Control register */
	writel(ctl, DEVICE_CPSW_BASE + CPSW_REG_CTL);

	/* All statistics enabled by default */
	writel(CPSW_REG_VAL_STAT_ENABLE_ALL,
	       DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN);

	/* Reset and enable the ALE */
	writel(CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE |
	       CPSW_REG_VAL_ALE_CTL_BYPASS,
	       DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL);

	/* All ports put into forward mode */
	for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++)
		writel(CPSW_REG_VAL_PORTCTL_FORWARD_MODE,
		       DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i));

	return 0;
}

int ethss_start(void)
{
	int i;
	struct mac_sl_cfg cfg;

	cfg.max_rx_len	= MAX_SIZE_STREAM_BUFFER;
	cfg.ctl		= GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL;

	for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) {
		mac_sl_reset(i);
		mac_sl_config(i, &cfg);
	}

	return 0;
}

int ethss_stop(void)
{
	int i;

	for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++)
		mac_sl_reset(i);

	return 0;
}

int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num)
{
	if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE)
		num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE;

	return ksnav_send(&netcp_pktdma, buffer,
			  num_bytes, (slave_port_num) << 16);
}

/* Eth device open */
static int keystone2_eth_open(struct eth_device *dev, bd_t *bis)
{
	u_int32_t clkdiv;
	int link;
	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;

	debug("+ emac_open\n");

	net_rx_buffs.rx_flow	= eth_priv->rx_flow;

	sys_has_mdio =
		(eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0;

	sgmii_serdes_setup_156p25mhz();

	if (sys_has_mdio)
		keystone2_eth_mdio_enable();

	keystone_sgmii_config(eth_priv->slave_port - 1,
			      eth_priv->sgmii_link_type);

	udelay(10000);

	/* On chip switch configuration */
	ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE);

	/* TODO: add error handling code */
	if (qm_init()) {
		printf("ERROR: qm_init()\n");
		return -1;
	}
	if (ksnav_init(&netcp_pktdma, &net_rx_buffs)) {
		qm_close();
		printf("ERROR: netcp_init()\n");
		return -1;
	}

	/*
	 * Streaming switch configuration. If not present this
	 * statement is defined to void in target.h.
	 * If present this is usually defined to a series of register writes
	 */
	hw_config_streaming_switch();

	if (sys_has_mdio) {
		/* Init MDIO & get link state */
		clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;
		writel((clkdiv & 0xff) | MDIO_CONTROL_ENABLE |
		       MDIO_CONTROL_FAULT, &adap_mdio->control)
			;

		/* We need to wait for MDIO to start */
		udelay(1000);

		link = keystone_get_link_status(dev);
		if (link == 0) {
			ksnav_close(&netcp_pktdma);
			qm_close();
			return -1;
		}
	}

	emac_gigabit_enable(dev);

	ethss_start();

	debug("- emac_open\n");

	emac_open = 1;

	return 0;
}

/* Eth device close */
void keystone2_eth_close(struct eth_device *dev)
{
	debug("+ emac_close\n");

	if (!emac_open)
		return;

	ethss_stop();

	ksnav_close(&netcp_pktdma);
	qm_close();

	emac_open = 0;

	debug("- emac_close\n");
}

/*
 * This function sends a single packet on the network and returns
 * positive number (number of bytes transmitted) or negative for error
 */
static int keystone2_eth_send_packet(struct eth_device *dev,
					void *packet, int length)
{
	int ret_status = -1;
	struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;

	if (keystone_get_link_status(dev) == 0)
		return -1;

	if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0)
		return ret_status;

	return length;
}

/*
 * This function handles receipt of a packet from the network
 */
static int keystone2_eth_rcv_packet(struct eth_device *dev)
{
	void *hd;
	int  pkt_size;
	u32  *pkt;

	hd = ksnav_recv(&netcp_pktdma, &pkt, &pkt_size);
	if (hd == NULL)
		return 0;

	NetReceive((uchar *)pkt, pkt_size);

	ksnav_release_rxhd(&netcp_pktdma, hd);

	return pkt_size;
}

/*
 * This function initializes the EMAC hardware.
 */
int keystone2_emac_initialize(struct eth_priv_t *eth_priv)
{
	struct eth_device *dev;

	dev = malloc(sizeof(struct eth_device));
	if (dev == NULL)
		return -1;

	memset(dev, 0, sizeof(struct eth_device));

	strcpy(dev->name, eth_priv->int_name);
	dev->priv = eth_priv;

	keystone2_eth_read_mac_addr(dev);

	dev->iobase		= 0;
	dev->init		= keystone2_eth_open;
	dev->halt		= keystone2_eth_close;
	dev->send		= keystone2_eth_send_packet;
	dev->recv		= keystone2_eth_rcv_packet;

	eth_register(dev);

	return 0;
}

void sgmii_serdes_setup_156p25mhz(void)
{
	unsigned int cnt;

	/*
	 * configure Serializer/Deserializer (SerDes) hardware. SerDes IP
	 * hardware vendor published only register addresses and their values
	 * to be used for configuring SerDes. So had to use hardcoded values
	 * below.
	 */
	clrsetbits_le32(0x0232a000, 0xffff0000, 0x00800000);
	clrsetbits_le32(0x0232a014, 0x0000ffff, 0x00008282);
	clrsetbits_le32(0x0232a060, 0x00ffffff, 0x00142438);
	clrsetbits_le32(0x0232a064, 0x00ffff00, 0x00c3c700);
	clrsetbits_le32(0x0232a078, 0x0000ff00, 0x0000c000);

	clrsetbits_le32(0x0232a204, 0xff0000ff, 0x38000080);
	clrsetbits_le32(0x0232a208, 0x000000ff, 0x00000000);
	clrsetbits_le32(0x0232a20c, 0xff000000, 0x02000000);
	clrsetbits_le32(0x0232a210, 0xff000000, 0x1b000000);
	clrsetbits_le32(0x0232a214, 0x0000ffff, 0x00006fb8);
	clrsetbits_le32(0x0232a218, 0xffff00ff, 0x758000e4);
	clrsetbits_le32(0x0232a2ac, 0x0000ff00, 0x00004400);
	clrsetbits_le32(0x0232a22c, 0x00ffff00, 0x00200800);
	clrsetbits_le32(0x0232a280, 0x00ff00ff, 0x00820082);
	clrsetbits_le32(0x0232a284, 0xffffffff, 0x1d0f0385);

	clrsetbits_le32(0x0232a404, 0xff0000ff, 0x38000080);
	clrsetbits_le32(0x0232a408, 0x000000ff, 0x00000000);
	clrsetbits_le32(0x0232a40c, 0xff000000, 0x02000000);
	clrsetbits_le32(0x0232a410, 0xff000000, 0x1b000000);
	clrsetbits_le32(0x0232a414, 0x0000ffff, 0x00006fb8);
	clrsetbits_le32(0x0232a418, 0xffff00ff, 0x758000e4);
	clrsetbits_le32(0x0232a4ac, 0x0000ff00, 0x00004400);
	clrsetbits_le32(0x0232a42c, 0x00ffff00, 0x00200800);
	clrsetbits_le32(0x0232a480, 0x00ff00ff, 0x00820082);
	clrsetbits_le32(0x0232a484, 0xffffffff, 0x1d0f0385);

	clrsetbits_le32(0x0232a604, 0xff0000ff, 0x38000080);
	clrsetbits_le32(0x0232a608, 0x000000ff, 0x00000000);
	clrsetbits_le32(0x0232a60c, 0xff000000, 0x02000000);
	clrsetbits_le32(0x0232a610, 0xff000000, 0x1b000000);
	clrsetbits_le32(0x0232a614, 0x0000ffff, 0x00006fb8);
	clrsetbits_le32(0x0232a618, 0xffff00ff, 0x758000e4);
	clrsetbits_le32(0x0232a6ac, 0x0000ff00, 0x00004400);
	clrsetbits_le32(0x0232a62c, 0x00ffff00, 0x00200800);
	clrsetbits_le32(0x0232a680, 0x00ff00ff, 0x00820082);
	clrsetbits_le32(0x0232a684, 0xffffffff, 0x1d0f0385);

	clrsetbits_le32(0x0232a804, 0xff0000ff, 0x38000080);
	clrsetbits_le32(0x0232a808, 0x000000ff, 0x00000000);
	clrsetbits_le32(0x0232a80c, 0xff000000, 0x02000000);
	clrsetbits_le32(0x0232a810, 0xff000000, 0x1b000000);
	clrsetbits_le32(0x0232a814, 0x0000ffff, 0x00006fb8);
	clrsetbits_le32(0x0232a818, 0xffff00ff, 0x758000e4);
	clrsetbits_le32(0x0232a8ac, 0x0000ff00, 0x00004400);
	clrsetbits_le32(0x0232a82c, 0x00ffff00, 0x00200800);
	clrsetbits_le32(0x0232a880, 0x00ff00ff, 0x00820082);
	clrsetbits_le32(0x0232a884, 0xffffffff, 0x1d0f0385);

	clrsetbits_le32(0x0232aa00, 0x0000ff00, 0x00000800);
	clrsetbits_le32(0x0232aa08, 0xffff0000, 0x38a20000);
	clrsetbits_le32(0x0232aa30, 0x00ffff00, 0x008a8a00);
	clrsetbits_le32(0x0232aa84, 0x0000ff00, 0x00000600);
	clrsetbits_le32(0x0232aa94, 0xff000000, 0x10000000);
	clrsetbits_le32(0x0232aaa0, 0xff000000, 0x81000000);
	clrsetbits_le32(0x0232aabc, 0xff000000, 0xff000000);
	clrsetbits_le32(0x0232aac0, 0x000000ff, 0x0000008b);
	clrsetbits_le32(0x0232ab08, 0xffff0000, 0x583f0000);
	clrsetbits_le32(0x0232ab0c, 0x000000ff, 0x0000004e);
	clrsetbits_le32(0x0232a000, 0x000000ff, 0x00000003);
	clrsetbits_le32(0x0232aa00, 0x000000ff, 0x0000005f);

	clrsetbits_le32(0x0232aa48, 0x00ffff00, 0x00fd8c00);
	clrsetbits_le32(0x0232aa54, 0x00ffffff, 0x002fec72);
	clrsetbits_le32(0x0232aa58, 0xffffff00, 0x00f92100);
	clrsetbits_le32(0x0232aa5c, 0xffffffff, 0x00040060);
	clrsetbits_le32(0x0232aa60, 0xffffffff, 0x00008000);
	clrsetbits_le32(0x0232aa64, 0xffffffff, 0x0c581220);
	clrsetbits_le32(0x0232aa68, 0xffffffff, 0xe13b0602);
	clrsetbits_le32(0x0232aa6c, 0xffffffff, 0xb8074cc1);
	clrsetbits_le32(0x0232aa70, 0xffffffff, 0x3f02e989);
	clrsetbits_le32(0x0232aa74, 0x000000ff, 0x00000001);
	clrsetbits_le32(0x0232ab20, 0x00ff0000, 0x00370000);
	clrsetbits_le32(0x0232ab1c, 0xff000000, 0x37000000);
	clrsetbits_le32(0x0232ab20, 0x000000ff, 0x0000005d);

	/*Bring SerDes out of Reset if SerDes is Shutdown & is in Reset Mode*/
	clrbits_le32(0x0232a010, 1 << 28);

	/* Enable TX and RX via the LANExCTL_STS 0x0000 + x*4 */
	clrbits_le32(0x0232a228, 1 << 29);
	writel(0xF800F8C0, 0x0232bfe0);
	clrbits_le32(0x0232a428, 1 << 29);
	writel(0xF800F8C0, 0x0232bfe4);
	clrbits_le32(0x0232a628, 1 << 29);
	writel(0xF800F8C0, 0x0232bfe8);
	clrbits_le32(0x0232a828, 1 << 29);
	writel(0xF800F8C0, 0x0232bfec);

	/*Enable pll via the pll_ctrl 0x0014*/
	writel(0xe0000000, 0x0232bff4)
		;

	/*Waiting for SGMII Serdes PLL lock.*/
	for (cnt = 10000; cnt > 0 && ((readl(0x02090114) & 0x10) == 0); cnt--)
		;

	for (cnt = 10000; cnt > 0 && ((readl(0x02090214) & 0x10) == 0); cnt--)
		;

	for (cnt = 10000; cnt > 0 && ((readl(0x02090414) & 0x10) == 0); cnt--)
		;

	for (cnt = 10000; cnt > 0 && ((readl(0x02090514) & 0x10) == 0); cnt--)
		;

	udelay(45000);
}

void sgmii_serdes_shutdown(void)
{
	/*
	 * shutdown SerDes hardware. SerDes hardware vendor published only
	 * register addresses and their values. So had to use hardcoded
	 * values below.
	 */
	clrbits_le32(0x0232bfe0, 3 << 29 | 3 << 13);
	setbits_le32(0x02320228, 1 << 29);
	clrbits_le32(0x0232bfe4, 3 << 29 | 3 << 13);
	setbits_le32(0x02320428, 1 << 29);
	clrbits_le32(0x0232bfe8, 3 << 29 | 3 << 13);
	setbits_le32(0x02320628, 1 << 29);
	clrbits_le32(0x0232bfec, 3 << 29 | 3 << 13);
	setbits_le32(0x02320828, 1 << 29);

	clrbits_le32(0x02320034, 3 << 29);
	setbits_le32(0x02320010, 1 << 28);
}