1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*/
/*
* @file
* @brief PFE utility commands
*/
#include <common.h>
#include <command.h>
#include <log.h>
#include <linux/delay.h>
#include <net/pfe_eth/pfe_eth.h>
static inline void pfe_command_help(void)
{
printf("Usage: pfe [pe | status | expt ] <options>\n");
}
static void pfe_command_pe(int argc, char *const argv[])
{
if (argc >= 3 && strcmp(argv[2], "pmem") == 0) {
if (argc >= 4 && strcmp(argv[3], "read") == 0) {
int i;
int num;
int id;
u32 addr;
u32 size;
u32 val;
if (argc == 7) {
num = simple_strtoul(argv[6], NULL, 0);
} else if (argc == 6) {
num = 1;
} else {
printf("Usage: pfe pe pmem read <id> <addr> [<num>]\n");
return;
}
id = simple_strtoul(argv[4], NULL, 0);
addr = simple_strtoul(argv[5], NULL, 16);
size = 4;
for (i = 0; i < num; i++, addr += 4) {
val = pe_pmem_read(id, addr, size);
val = be32_to_cpu(val);
if (!(i & 3))
printf("%08x: ", addr);
printf("%08x%s", val, i == num - 1 || (i & 3)
== 3 ? "\n" : " ");
}
} else {
printf("Usage: pfe pe pmem read <parameters>\n");
}
} else if (argc >= 3 && strcmp(argv[2], "dmem") == 0) {
if (argc >= 4 && strcmp(argv[3], "read") == 0) {
int i;
int num;
int id;
u32 addr;
u32 size;
u32 val;
if (argc == 7) {
num = simple_strtoul(argv[6], NULL, 0);
} else if (argc == 6) {
num = 1;
} else {
printf("Usage: pfe pe dmem read <id> <addr> [<num>]\n");
return;
}
id = simple_strtoul(argv[4], NULL, 0);
addr = simple_strtoul(argv[5], NULL, 16);
size = 4;
for (i = 0; i < num; i++, addr += 4) {
val = pe_dmem_read(id, addr, size);
val = be32_to_cpu(val);
if (!(i & 3))
printf("%08x: ", addr);
printf("%08x%s", val, i == num - 1 || (i & 3)
== 3 ? "\n" : " ");
}
} else if (argc >= 4 && strcmp(argv[3], "write") == 0) {
int id;
u32 val;
u32 addr;
u32 size;
if (argc != 7) {
printf("Usage: pfe pe dmem write <id> <val> <addr>\n");
return;
}
id = simple_strtoul(argv[4], NULL, 0);
val = simple_strtoul(argv[5], NULL, 16);
val = cpu_to_be32(val);
addr = simple_strtoul(argv[6], NULL, 16);
size = 4;
pe_dmem_write(id, val, addr, size);
} else {
printf("Usage: pfe pe dmem [read | write] <parameters>\n");
}
} else if (argc >= 3 && strcmp(argv[2], "lmem") == 0) {
if (argc >= 4 && strcmp(argv[3], "read") == 0) {
int i;
int num;
u32 val;
u32 offset;
if (argc == 6) {
num = simple_strtoul(argv[5], NULL, 0);
} else if (argc == 5) {
num = 1;
} else {
printf("Usage: pfe pe lmem read <offset> [<num>]\n");
return;
}
offset = simple_strtoul(argv[4], NULL, 16);
for (i = 0; i < num; i++, offset += 4) {
pe_lmem_read(&val, 4, offset);
val = be32_to_cpu(val);
printf("%08x%s", val, i == num - 1 || (i & 7)
== 7 ? "\n" : " ");
}
} else if (argc >= 4 && strcmp(argv[3], "write") == 0) {
u32 val;
u32 offset;
if (argc != 6) {
printf("Usage: pfe pe lmem write <val> <offset>\n");
return;
}
val = simple_strtoul(argv[4], NULL, 16);
val = cpu_to_be32(val);
offset = simple_strtoul(argv[5], NULL, 16);
pe_lmem_write(&val, 4, offset);
} else {
printf("Usage: pfe pe lmem [read | write] <parameters>\n");
}
} else {
if (strcmp(argv[2], "help") != 0)
printf("Unknown option: %s\n", argv[2]);
printf("Usage: pfe pe <parameters>\n");
}
}
#define NUM_QUEUES 16
/*
* qm_read_drop_stat
* This function is used to read the drop statistics from the TMU
* hw drop counter. Since the hw counter is always cleared afer
* reading, this function maintains the previous drop count, and
* adds the new value to it. That value can be retrieved by
* passing a pointer to it with the total_drops arg.
*
* @param tmu TMU number (0 - 3)
* @param queue queue number (0 - 15)
* @param total_drops pointer to location to store total drops (or NULL)
* @param do_reset if TRUE, clear total drops after updating
*
*/
u32 qm_read_drop_stat(u32 tmu, u32 queue, u32 *total_drops, int do_reset)
{
static u32 qtotal[TMU_MAX_ID + 1][NUM_QUEUES];
u32 val;
writel((tmu << 8) | queue, TMU_TEQ_CTRL);
writel((tmu << 8) | queue, TMU_LLM_CTRL);
val = readl(TMU_TEQ_DROP_STAT);
qtotal[tmu][queue] += val;
if (total_drops)
*total_drops = qtotal[tmu][queue];
if (do_reset)
qtotal[tmu][queue] = 0;
return val;
}
static ssize_t tmu_queue_stats(char *buf, int tmu, int queue)
{
ssize_t len = 0;
u32 drops;
printf("%d-%02d, ", tmu, queue);
drops = qm_read_drop_stat(tmu, queue, NULL, 0);
/* Select queue */
writel((tmu << 8) | queue, TMU_TEQ_CTRL);
writel((tmu << 8) | queue, TMU_LLM_CTRL);
printf("(teq) drop: %10u, tx: %10u (llm) head: %08x, tail: %08x, drop: %10u\n",
drops, readl(TMU_TEQ_TRANS_STAT),
readl(TMU_LLM_QUE_HEADPTR), readl(TMU_LLM_QUE_TAILPTR),
readl(TMU_LLM_QUE_DROPCNT));
return len;
}
static ssize_t tmu_queues(char *buf, int tmu)
{
ssize_t len = 0;
int queue;
for (queue = 0; queue < 16; queue++)
len += tmu_queue_stats(buf + len, tmu, queue);
return len;
}
static inline void hif_status(void)
{
printf("hif:\n");
printf(" tx curr bd: %x\n", readl(HIF_TX_CURR_BD_ADDR));
printf(" tx status: %x\n", readl(HIF_TX_STATUS));
printf(" tx dma status: %x\n", readl(HIF_TX_DMA_STATUS));
printf(" rx curr bd: %x\n", readl(HIF_RX_CURR_BD_ADDR));
printf(" rx status: %x\n", readl(HIF_RX_STATUS));
printf(" rx dma status: %x\n", readl(HIF_RX_DMA_STATUS));
printf("hif nocopy:\n");
printf(" tx curr bd: %x\n", readl(HIF_NOCPY_TX_CURR_BD_ADDR));
printf(" tx status: %x\n", readl(HIF_NOCPY_TX_STATUS));
printf(" tx dma status: %x\n", readl(HIF_NOCPY_TX_DMA_STATUS));
printf(" rx curr bd: %x\n", readl(HIF_NOCPY_RX_CURR_BD_ADDR));
printf(" rx status: %x\n", readl(HIF_NOCPY_RX_STATUS));
printf(" rx dma status: %x\n", readl(HIF_NOCPY_RX_DMA_STATUS));
}
static void gpi(int id, void *base)
{
u32 val;
printf("%s%d:\n", __func__, id);
printf(" tx under stick: %x\n", readl(base + GPI_FIFO_STATUS));
val = readl(base + GPI_FIFO_DEBUG);
printf(" tx pkts: %x\n", (val >> 23) & 0x3f);
printf(" rx pkts: %x\n", (val >> 18) & 0x3f);
printf(" tx bytes: %x\n", (val >> 9) & 0x1ff);
printf(" rx bytes: %x\n", (val >> 0) & 0x1ff);
printf(" overrun: %x\n", readl(base + GPI_OVERRUN_DROPCNT));
}
static void bmu(int id, void *base)
{
printf("%s%d:\n", __func__, id);
printf(" buf size: %x\n", (1 << readl(base + BMU_BUF_SIZE)));
printf(" buf count: %x\n", readl(base + BMU_BUF_CNT));
printf(" buf rem: %x\n", readl(base + BMU_REM_BUF_CNT));
printf(" buf curr: %x\n", readl(base + BMU_CURR_BUF_CNT));
printf(" free err: %x\n", readl(base + BMU_FREE_ERR_ADDR));
}
#define PESTATUS_ADDR_CLASS 0x800
#define PEMBOX_ADDR_CLASS 0x890
#define PESTATUS_ADDR_TMU 0x80
#define PEMBOX_ADDR_TMU 0x290
#define PESTATUS_ADDR_UTIL 0x0
static void pfe_pe_status(int argc, char *const argv[])
{
int do_clear = 0;
u32 id;
u32 dmem_addr;
u32 cpu_state;
u32 activity_counter;
u32 rx;
u32 tx;
u32 drop;
char statebuf[5];
u32 class_debug_reg = 0;
if (argc == 4 && strcmp(argv[3], "clear") == 0)
do_clear = 1;
for (id = CLASS0_ID; id < MAX_PE; id++) {
if (id >= TMU0_ID) {
if (id == TMU2_ID)
continue;
if (id == TMU0_ID)
printf("tmu:\n");
dmem_addr = PESTATUS_ADDR_TMU;
} else {
if (id == CLASS0_ID)
printf("class:\n");
dmem_addr = PESTATUS_ADDR_CLASS;
class_debug_reg = readl(CLASS_PE0_DEBUG + id * 4);
}
cpu_state = pe_dmem_read(id, dmem_addr, 4);
dmem_addr += 4;
memcpy(statebuf, (char *)&cpu_state, 4);
statebuf[4] = '\0';
activity_counter = pe_dmem_read(id, dmem_addr, 4);
dmem_addr += 4;
rx = pe_dmem_read(id, dmem_addr, 4);
if (do_clear)
pe_dmem_write(id, 0, dmem_addr, 4);
dmem_addr += 4;
tx = pe_dmem_read(id, dmem_addr, 4);
if (do_clear)
pe_dmem_write(id, 0, dmem_addr, 4);
dmem_addr += 4;
drop = pe_dmem_read(id, dmem_addr, 4);
if (do_clear)
pe_dmem_write(id, 0, dmem_addr, 4);
dmem_addr += 4;
if (id >= TMU0_ID) {
printf("%d: state=%4s ctr=%08x rx=%x qstatus=%x\n",
id - TMU0_ID, statebuf,
cpu_to_be32(activity_counter),
cpu_to_be32(rx), cpu_to_be32(tx));
} else {
printf("%d: pc=1%04x ldst=%04x state=%4s ctr=%08x rx=%x tx=%x drop=%x\n",
id - CLASS0_ID, class_debug_reg & 0xFFFF,
class_debug_reg >> 16,
statebuf, cpu_to_be32(activity_counter),
cpu_to_be32(rx), cpu_to_be32(tx),
cpu_to_be32(drop));
}
}
}
static void pfe_command_status(int argc, char *const argv[])
{
if (argc >= 3 && strcmp(argv[2], "pe") == 0) {
pfe_pe_status(argc, argv);
} else if (argc == 3 && strcmp(argv[2], "bmu") == 0) {
bmu(1, BMU1_BASE_ADDR);
bmu(2, BMU2_BASE_ADDR);
} else if (argc == 3 && strcmp(argv[2], "hif") == 0) {
hif_status();
} else if (argc == 3 && strcmp(argv[2], "gpi") == 0) {
gpi(0, EGPI1_BASE_ADDR);
gpi(1, EGPI2_BASE_ADDR);
gpi(3, HGPI_BASE_ADDR);
} else if (argc == 3 && strcmp(argv[2], "tmu0_queues") == 0) {
tmu_queues(NULL, 0);
} else if (argc == 3 && strcmp(argv[2], "tmu1_queues") == 0) {
tmu_queues(NULL, 1);
} else if (argc == 3 && strcmp(argv[2], "tmu3_queues") == 0) {
tmu_queues(NULL, 3);
} else {
printf("Usage: pfe status [pe <clear> | bmu | gpi | hif | tmuX_queues ]\n");
}
}
#define EXPT_DUMP_ADDR 0x1fa8
#define EXPT_REG_COUNT 20
static const char *register_names[EXPT_REG_COUNT] = {
" pc", "ECAS", " EID", " ED",
" sp", " r1", " r2", " r3",
" r4", " r5", " r6", " r7",
" r8", " r9", " r10", " r11",
" r12", " r13", " r14", " r15"
};
static void pfe_command_expt(int argc, char *const argv[])
{
unsigned int id, i, val, addr;
if (argc == 3) {
id = simple_strtoul(argv[2], NULL, 0);
addr = EXPT_DUMP_ADDR;
printf("Exception information for PE %d:\n", id);
for (i = 0; i < EXPT_REG_COUNT; i++) {
val = pe_dmem_read(id, addr, 4);
val = be32_to_cpu(val);
printf("%s:%08x%s", register_names[i], val,
(i & 3) == 3 ? "\n" : " ");
addr += 4;
}
} else {
printf("Usage: pfe expt <id>\n");
}
}
#ifdef PFE_RESET_WA
/*This function sends a dummy packet to HIF through TMU3 */
static void send_dummy_pkt_to_hif(void)
{
u32 buf;
static u32 dummy_pkt[] = {
0x4200800a, 0x01000003, 0x00018100, 0x00000000,
0x33221100, 0x2b785544, 0xd73093cb, 0x01000608,
0x04060008, 0x2b780200, 0xd73093cb, 0x0a01a8c0,
0x33221100, 0xa8c05544, 0x00000301, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0xbe86c51f };
/*Allocate BMU2 buffer */
buf = readl(BMU2_BASE_ADDR + BMU_ALLOC_CTRL);
debug("Sending a dummy pkt to HIF %x\n", buf);
buf += 0x80;
memcpy((void *)DDR_PFE_TO_VIRT(buf), dummy_pkt, sizeof(dummy_pkt));
/*Write length and pkt to TMU*/
writel(0x03000042, TMU_PHY_INQ_PKTPTR);
writel(buf, TMU_PHY_INQ_PKTINFO);
}
static void pfe_command_stop(int argc, char *const argv[])
{
int pfe_pe_id, hif_stop_loop = 10;
u32 rx_status;
printf("Stopping PFE...\n");
/*Mark all descriptors as LAST_BD */
hif_rx_desc_disable();
/*If HIF Rx BDP is busy send a dummy packet */
do {
rx_status = readl(HIF_RX_STATUS);
if (rx_status & BDP_CSR_RX_DMA_ACTV)
send_dummy_pkt_to_hif();
udelay(10);
} while (hif_stop_loop--);
if (readl(HIF_RX_STATUS) & BDP_CSR_RX_DMA_ACTV)
printf("Unable to stop HIF\n");
/*Disable Class PEs */
for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
/*Inform PE to stop */
pe_dmem_write(pfe_pe_id, cpu_to_be32(1), PEMBOX_ADDR_CLASS, 4);
udelay(10);
/*Read status */
if (!pe_dmem_read(pfe_pe_id, PEMBOX_ADDR_CLASS + 4, 4))
printf("Failed to stop PE%d\n", pfe_pe_id);
}
/*Disable TMU PEs */
for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
if (pfe_pe_id == TMU2_ID)
continue;
/*Inform PE to stop */
pe_dmem_write(pfe_pe_id, 1, PEMBOX_ADDR_TMU, 4);
udelay(10);
/*Read status */
if (!pe_dmem_read(pfe_pe_id, PEMBOX_ADDR_TMU + 4, 4))
printf("Failed to stop PE%d\n", pfe_pe_id);
}
}
#endif
static int pfe_command(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
if (argc == 1 || strcmp(argv[1], "help") == 0) {
pfe_command_help();
return CMD_RET_SUCCESS;
}
if (strcmp(argv[1], "pe") == 0) {
pfe_command_pe(argc, argv);
} else if (strcmp(argv[1], "status") == 0) {
pfe_command_status(argc, argv);
} else if (strcmp(argv[1], "expt") == 0) {
pfe_command_expt(argc, argv);
#ifdef PFE_RESET_WA
} else if (strcmp(argv[1], "stop") == 0) {
pfe_command_stop(argc, argv);
#endif
} else {
printf("Unknown option: %s\n", argv[1]);
pfe_command_help();
return CMD_RET_FAILURE;
}
return CMD_RET_SUCCESS;
}
U_BOOT_CMD(
pfe, 7, 1, pfe_command,
"Performs PFE lib utility functions",
"Usage:\n"
"pfe <options>"
);
|