1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
|
/*
* (C) Copyright 2015
* Elecsys Corporation <www.elecsyscorp.com>
* Kevin Smith <kevin.smith@elecsyscorp.com>
*
* Original driver:
* (C) Copyright 2009
* Marvell Semiconductor <www.marvell.com>
* Prafulla Wadaskar <prafulla@marvell.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* PHY driver for mv88e61xx ethernet switches.
*
* This driver configures the mv88e61xx for basic use as a PHY. The switch
* supports a VLAN configuration that determines how traffic will be routed
* between the ports. This driver uses a simple configuration that routes
* traffic from each PHY port only to the CPU port, and from the CPU port to
* any PHY port.
*
* The configuration determines which PHY ports to activate using the
* CONFIG_MV88E61XX_PHY_PORTS bitmask. Setting bit 0 will activate port 0, bit
* 1 activates port 1, etc. Do not set the bit for the port the CPU is
* connected to unless it is connected over a PHY interface (not MII).
*
* This driver was written for and tested on the mv88e6176 with an SGMII
* connection. Other configurations should be supported, but some additions or
* changes may be required.
*/
#include <common.h>
#include <bitfield.h>
#include <errno.h>
#include <malloc.h>
#include <miiphy.h>
#include <netdev.h>
#define PHY_AUTONEGOTIATE_TIMEOUT 5000
#define PORT_COUNT 11
#define PORT_MASK ((1 << PORT_COUNT) - 1)
/* Device addresses */
#define DEVADDR_PHY(p) (p)
#define DEVADDR_PORT(p) (0x10 + (p))
#define DEVADDR_SERDES 0x0F
#define DEVADDR_GLOBAL_1 0x1B
#define DEVADDR_GLOBAL_2 0x1C
/* SMI indirection registers for multichip addressing mode */
#define SMI_CMD_REG 0x00
#define SMI_DATA_REG 0x01
/* Global registers */
#define GLOBAL1_STATUS 0x00
#define GLOBAL1_CTRL 0x04
#define GLOBAL1_MON_CTRL 0x1A
/* Global 2 registers */
#define GLOBAL2_REG_PHY_CMD 0x18
#define GLOBAL2_REG_PHY_DATA 0x19
/* Port registers */
#define PORT_REG_STATUS 0x00
#define PORT_REG_PHYS_CTRL 0x01
#define PORT_REG_SWITCH_ID 0x03
#define PORT_REG_CTRL 0x04
#define PORT_REG_VLAN_MAP 0x06
#define PORT_REG_VLAN_ID 0x07
/* Phy registers */
#define PHY_REG_CTRL1 0x10
#define PHY_REG_STATUS1 0x11
#define PHY_REG_PAGE 0x16
/* Serdes registers */
#define SERDES_REG_CTRL_1 0x10
/* Phy page numbers */
#define PHY_PAGE_COPPER 0
#define PHY_PAGE_SERDES 1
/* Register fields */
#define GLOBAL1_CTRL_SWRESET BIT(15)
#define GLOBAL1_MON_CTRL_CPUDEST_SHIFT 4
#define GLOBAL1_MON_CTRL_CPUDEST_WIDTH 4
#define PORT_REG_STATUS_LINK BIT(11)
#define PORT_REG_STATUS_DUPLEX BIT(10)
#define PORT_REG_STATUS_SPEED_SHIFT 8
#define PORT_REG_STATUS_SPEED_WIDTH 2
#define PORT_REG_STATUS_SPEED_10 0
#define PORT_REG_STATUS_SPEED_100 1
#define PORT_REG_STATUS_SPEED_1000 2
#define PORT_REG_STATUS_CMODE_MASK 0xF
#define PORT_REG_STATUS_CMODE_100BASE_X 0x8
#define PORT_REG_STATUS_CMODE_1000BASE_X 0x9
#define PORT_REG_STATUS_CMODE_SGMII 0xa
#define PORT_REG_PHYS_CTRL_LINK_VALUE BIT(5)
#define PORT_REG_PHYS_CTRL_LINK_FORCE BIT(4)
#define PORT_REG_CTRL_PSTATE_SHIFT 0
#define PORT_REG_CTRL_PSTATE_WIDTH 2
#define PORT_REG_VLAN_ID_DEF_VID_SHIFT 0
#define PORT_REG_VLAN_ID_DEF_VID_WIDTH 12
#define PORT_REG_VLAN_MAP_TABLE_SHIFT 0
#define PORT_REG_VLAN_MAP_TABLE_WIDTH 11
#define SERDES_REG_CTRL_1_FORCE_LINK BIT(10)
#define PHY_REG_CTRL1_ENERGY_DET_SHIFT 8
#define PHY_REG_CTRL1_ENERGY_DET_WIDTH 2
/* Field values */
#define PORT_REG_CTRL_PSTATE_DISABLED 0
#define PORT_REG_CTRL_PSTATE_FORWARD 3
#define PHY_REG_CTRL1_ENERGY_DET_OFF 0
#define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY 2
#define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT 3
/* PHY Status Register */
#define PHY_REG_STATUS1_SPEED 0xc000
#define PHY_REG_STATUS1_GBIT 0x8000
#define PHY_REG_STATUS1_100 0x4000
#define PHY_REG_STATUS1_DUPLEX 0x2000
#define PHY_REG_STATUS1_SPDDONE 0x0800
#define PHY_REG_STATUS1_LINK 0x0400
#define PHY_REG_STATUS1_ENERGY 0x0010
/*
* Macros for building commands for indirect addressing modes. These are valid
* for both the indirect multichip addressing mode and the PHY indirection
* required for the writes to any PHY register.
*/
#define SMI_BUSY BIT(15)
#define SMI_CMD_CLAUSE_22 BIT(12)
#define SMI_CMD_CLAUSE_22_OP_READ (2 << 10)
#define SMI_CMD_CLAUSE_22_OP_WRITE (1 << 10)
#define SMI_CMD_READ (SMI_BUSY | SMI_CMD_CLAUSE_22 | \
SMI_CMD_CLAUSE_22_OP_READ)
#define SMI_CMD_WRITE (SMI_BUSY | SMI_CMD_CLAUSE_22 | \
SMI_CMD_CLAUSE_22_OP_WRITE)
#define SMI_CMD_ADDR_SHIFT 5
#define SMI_CMD_ADDR_WIDTH 5
#define SMI_CMD_REG_SHIFT 0
#define SMI_CMD_REG_WIDTH 5
/* Check for required macros */
#ifndef CONFIG_MV88E61XX_PHY_PORTS
#error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
to activate
#endif
#ifndef CONFIG_MV88E61XX_CPU_PORT
#error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
#endif
/* ID register values for different switch models */
#define PORT_SWITCH_ID_6096 0x0980
#define PORT_SWITCH_ID_6097 0x0990
#define PORT_SWITCH_ID_6172 0x1720
#define PORT_SWITCH_ID_6176 0x1760
#define PORT_SWITCH_ID_6240 0x2400
#define PORT_SWITCH_ID_6352 0x3520
struct mv88e61xx_phy_priv {
struct mii_dev *mdio_bus;
int smi_addr;
int id;
};
static inline int smi_cmd(int cmd, int addr, int reg)
{
cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
addr);
cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
return cmd;
}
static inline int smi_cmd_read(int addr, int reg)
{
return smi_cmd(SMI_CMD_READ, addr, reg);
}
static inline int smi_cmd_write(int addr, int reg)
{
return smi_cmd(SMI_CMD_WRITE, addr, reg);
}
__weak int mv88e61xx_hw_reset(struct phy_device *phydev)
{
return 0;
}
/* Wait for the current SMI indirect command to complete */
static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
{
int val;
u32 timeout = 100;
do {
val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
if (val >= 0 && (val & SMI_BUSY) == 0)
return 0;
mdelay(1);
} while (--timeout);
puts("SMI busy timeout\n");
return -ETIMEDOUT;
}
/*
* The mv88e61xx has three types of addresses: the smi bus address, the device
* address, and the register address. The smi bus address distinguishes it on
* the smi bus from other PHYs or switches. The device address determines
* which on-chip register set you are reading/writing (the various PHYs, their
* associated ports, or global configuration registers). The register address
* is the offset of the register you are reading/writing.
*
* When the mv88e61xx is hardware configured to have address zero, it behaves in
* single-chip addressing mode, where it responds to all SMI addresses, using
* the smi address as its device address. This obviously only works when this
* is the only chip on the SMI bus. This allows the driver to access device
* registers without using indirection. When the chip is configured to a
* non-zero address, it only responds to that SMI address and requires indirect
* writes to access the different device addresses.
*/
static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
{
struct mv88e61xx_phy_priv *priv = phydev->priv;
struct mii_dev *mdio_bus = priv->mdio_bus;
int smi_addr = priv->smi_addr;
int res;
/* In single-chip mode, the device can be addressed directly */
if (smi_addr == 0)
return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
/* Wait for the bus to become free */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
/* Issue the read command */
res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
smi_cmd_read(dev, reg));
if (res < 0)
return res;
/* Wait for the read command to complete */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
/* Read the data */
res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
if (res < 0)
return res;
return bitfield_extract(res, 0, 16);
}
/* See the comment above mv88e61xx_reg_read */
static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
u16 val)
{
struct mv88e61xx_phy_priv *priv = phydev->priv;
struct mii_dev *mdio_bus = priv->mdio_bus;
int smi_addr = priv->smi_addr;
int res;
/* In single-chip mode, the device can be addressed directly */
if (smi_addr == 0) {
return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
val);
}
/* Wait for the bus to become free */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
/* Set the data to write */
res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
SMI_DATA_REG, val);
if (res < 0)
return res;
/* Issue the write command */
res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
smi_cmd_write(dev, reg));
if (res < 0)
return res;
/* Wait for the write command to complete */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
return 0;
}
static int mv88e61xx_phy_wait(struct phy_device *phydev)
{
int val;
u32 timeout = 100;
do {
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_CMD);
if (val >= 0 && (val & SMI_BUSY) == 0)
return 0;
mdelay(1);
} while (--timeout);
return -ETIMEDOUT;
}
static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
int devad, int reg)
{
struct phy_device *phydev;
int res;
phydev = (struct phy_device *)smi_wrapper->priv;
/* Issue command to read */
res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_CMD,
smi_cmd_read(dev, reg));
/* Wait for data to be read */
res = mv88e61xx_phy_wait(phydev);
if (res < 0)
return res;
/* Read retrieved data */
return mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_DATA);
}
static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
int devad, int reg, u16 data)
{
struct phy_device *phydev;
int res;
phydev = (struct phy_device *)smi_wrapper->priv;
/* Set the data to write */
res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_DATA, data);
if (res < 0)
return res;
/* Issue the write command */
res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_CMD,
smi_cmd_write(dev, reg));
if (res < 0)
return res;
/* Wait for command to complete */
return mv88e61xx_phy_wait(phydev);
}
/* Wrapper function to make calls to phy_read_indirect simpler */
static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
{
return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
MDIO_DEVAD_NONE, reg);
}
/* Wrapper function to make calls to phy_read_indirect simpler */
static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
int reg, u16 val)
{
return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
MDIO_DEVAD_NONE, reg, val);
}
static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
{
return mv88e61xx_reg_read(phydev, DEVADDR_PORT(port), reg);
}
static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
u16 val)
{
return mv88e61xx_reg_write(phydev, DEVADDR_PORT(port), reg, val);
}
static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
{
return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
}
static int mv88e61xx_get_switch_id(struct phy_device *phydev)
{
int res;
res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
if (res < 0)
return res;
return res & 0xfff0;
}
static bool mv88e61xx_6352_family(struct phy_device *phydev)
{
struct mv88e61xx_phy_priv *priv = phydev->priv;
switch (priv->id) {
case PORT_SWITCH_ID_6172:
case PORT_SWITCH_ID_6176:
case PORT_SWITCH_ID_6240:
case PORT_SWITCH_ID_6352:
return true;
}
return false;
}
static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
{
int res;
res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
if (res < 0)
return res;
return res & PORT_REG_STATUS_CMODE_MASK;
}
static int mv88e61xx_parse_status(struct phy_device *phydev)
{
unsigned int speed;
unsigned int mii_reg;
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
if ((mii_reg & PHY_REG_STATUS1_LINK) &&
!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
int i = 0;
puts("Waiting for PHY realtime link");
while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
/* Timeout reached ? */
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts(" TIMEOUT !\n");
phydev->link = 0;
break;
}
if ((i++ % 1000) == 0)
putc('.');
udelay(1000);
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
PHY_REG_STATUS1);
}
puts(" done\n");
udelay(500000); /* another 500 ms (results in faster booting) */
} else {
if (mii_reg & PHY_REG_STATUS1_LINK)
phydev->link = 1;
else
phydev->link = 0;
}
if (mii_reg & PHY_REG_STATUS1_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
speed = mii_reg & PHY_REG_STATUS1_SPEED;
switch (speed) {
case PHY_REG_STATUS1_GBIT:
phydev->speed = SPEED_1000;
break;
case PHY_REG_STATUS1_100:
phydev->speed = SPEED_100;
break;
default:
phydev->speed = SPEED_10;
break;
}
return 0;
}
static int mv88e61xx_switch_reset(struct phy_device *phydev)
{
int time;
int val;
u8 port;
/* Disable all ports */
for (port = 0; port < PORT_COUNT; port++) {
val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
PORT_REG_CTRL_PSTATE_WIDTH,
PORT_REG_CTRL_PSTATE_DISABLED);
val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
if (val < 0)
return val;
}
/* Wait 2 ms for queues to drain */
udelay(2000);
/* Reset switch */
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_CTRL);
if (val < 0)
return val;
val |= GLOBAL1_CTRL_SWRESET;
val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
GLOBAL1_CTRL, val);
if (val < 0)
return val;
/* Wait up to 1 second for switch reset complete */
for (time = 1000; time; time--) {
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1,
GLOBAL1_CTRL);
if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
break;
udelay(1000);
}
if (!time)
return -ETIMEDOUT;
return 0;
}
static int mv88e61xx_serdes_init(struct phy_device *phydev)
{
int val;
val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
if (val < 0)
return val;
/* Power up serdes module */
val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
if (val < 0)
return val;
val &= ~(BMCR_PDOWN);
val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
{
int val;
val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
PORT_REG_CTRL_PSTATE_WIDTH,
PORT_REG_CTRL_PSTATE_FORWARD);
val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
u16 mask)
{
int val;
/* Set VID to port number plus one */
val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
PORT_REG_VLAN_ID_DEF_VID_WIDTH,
port + 1);
val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
if (val < 0)
return val;
/* Set VID mask */
val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
PORT_REG_VLAN_MAP_TABLE_WIDTH,
mask);
val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
{
int res;
int val;
bool forced = false;
val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
if (val < 0)
return val;
if (!(val & PORT_REG_STATUS_LINK)) {
/* Temporarily force link to read port configuration */
u32 timeout = 100;
forced = true;
val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
if (val < 0)
return val;
val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
PORT_REG_PHYS_CTRL_LINK_VALUE);
val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
val);
if (val < 0)
return val;
/* Wait for status register to reflect forced link */
do {
val = mv88e61xx_port_read(phydev, port,
PORT_REG_STATUS);
if (val < 0)
goto unforce;
if (val & PORT_REG_STATUS_LINK)
break;
} while (--timeout);
if (timeout == 0) {
res = -ETIMEDOUT;
goto unforce;
}
}
if (val & PORT_REG_STATUS_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
PORT_REG_STATUS_SPEED_WIDTH);
switch (val) {
case PORT_REG_STATUS_SPEED_1000:
phydev->speed = SPEED_1000;
break;
case PORT_REG_STATUS_SPEED_100:
phydev->speed = SPEED_100;
break;
default:
phydev->speed = SPEED_10;
break;
}
res = 0;
unforce:
if (forced) {
val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
if (val < 0)
return val;
val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
PORT_REG_PHYS_CTRL_LINK_VALUE);
val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
val);
if (val < 0)
return val;
}
return res;
}
static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
{
int val;
/* Set CPUDest */
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_MON_CTRL);
if (val < 0)
return val;
val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
CONFIG_MV88E61XX_CPU_PORT);
val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
GLOBAL1_MON_CTRL, val);
if (val < 0)
return val;
/* Allow CPU to route to any port */
val = PORT_MASK & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
if (val < 0)
return val;
/* Enable CPU port */
val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
/* If CPU is connected to serdes, initialize serdes */
if (mv88e61xx_6352_family(phydev)) {
val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
val == PORT_REG_STATUS_CMODE_1000BASE_X ||
val == PORT_REG_STATUS_CMODE_SGMII) {
val = mv88e61xx_serdes_init(phydev);
if (val < 0)
return val;
}
}
return 0;
}
static int mv88e61xx_switch_init(struct phy_device *phydev)
{
static int init;
int res;
if (init)
return 0;
res = mv88e61xx_switch_reset(phydev);
if (res < 0)
return res;
res = mv88e61xx_set_cpu_port(phydev);
if (res < 0)
return res;
init = 1;
return 0;
}
static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
{
int val;
val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
if (val < 0)
return val;
val &= ~(BMCR_PDOWN);
val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
{
int val;
/*
* Enable energy-detect sensing on PHY, used to determine when a PHY
* port is physically connected
*/
val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
if (val < 0)
return val;
val = bitfield_replace(val, PHY_REG_CTRL1_ENERGY_DET_SHIFT,
PHY_REG_CTRL1_ENERGY_DET_WIDTH,
PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT);
val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
{
int val;
val = mv88e61xx_port_enable(phydev, phy);
if (val < 0)
return val;
val = mv88e61xx_port_set_vlan(phydev, phy,
1 << CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_probe(struct phy_device *phydev)
{
struct mii_dev *smi_wrapper;
struct mv88e61xx_phy_priv *priv;
int res;
res = mv88e61xx_hw_reset(phydev);
if (res < 0)
return res;
priv = malloc(sizeof(*priv));
if (!priv)
return -ENOMEM;
memset(priv, 0, sizeof(*priv));
/*
* This device requires indirect reads/writes to the PHY registers
* which the generic PHY code can't handle. Make a wrapper MII device
* to handle reads/writes
*/
smi_wrapper = mdio_alloc();
if (!smi_wrapper) {
free(priv);
return -ENOMEM;
}
/*
* Store the mdio bus in the private data, as we are going to replace
* the bus with the wrapper bus
*/
priv->mdio_bus = phydev->bus;
/*
* Store the smi bus address in private data. This lets us use the
* phydev addr field for device address instead, as the genphy code
* expects.
*/
priv->smi_addr = phydev->addr;
/*
* Store the phy_device in the wrapper mii device. This lets us get it
* back when genphy functions call phy_read/phy_write.
*/
smi_wrapper->priv = phydev;
strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
smi_wrapper->read = mv88e61xx_phy_read_indirect;
smi_wrapper->write = mv88e61xx_phy_write_indirect;
/* Replace the bus with the wrapper device */
phydev->bus = smi_wrapper;
phydev->priv = priv;
priv->id = mv88e61xx_get_switch_id(phydev);
return 0;
}
static int mv88e61xx_phy_config(struct phy_device *phydev)
{
int res;
int i;
int ret = -1;
res = mv88e61xx_switch_init(phydev);
if (res < 0)
return res;
for (i = 0; i < PORT_COUNT; i++) {
if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
phydev->addr = i;
res = mv88e61xx_phy_enable(phydev, i);
if (res < 0) {
printf("Error enabling PHY %i\n", i);
continue;
}
res = mv88e61xx_phy_setup(phydev, i);
if (res < 0) {
printf("Error setting up PHY %i\n", i);
continue;
}
res = mv88e61xx_phy_config_port(phydev, i);
if (res < 0) {
printf("Error configuring PHY %i\n", i);
continue;
}
res = genphy_config_aneg(phydev);
if (res < 0) {
printf("Error setting PHY %i autoneg\n", i);
continue;
}
res = phy_reset(phydev);
if (res < 0) {
printf("Error resetting PHY %i\n", i);
continue;
}
/* Return success if any PHY succeeds */
ret = 0;
}
}
return ret;
}
static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
{
int val;
val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
if (val < 0)
return 0;
/*
* After reset, the energy detect signal remains high for a few seconds
* regardless of whether a cable is connected. This function will
* return false positives during this time.
*/
return (val & PHY_REG_STATUS1_ENERGY) == 0;
}
static int mv88e61xx_phy_startup(struct phy_device *phydev)
{
int i;
int link = 0;
int res;
int speed = phydev->speed;
int duplex = phydev->duplex;
for (i = 0; i < PORT_COUNT; i++) {
if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
phydev->addr = i;
if (!mv88e61xx_phy_is_connected(phydev))
continue;
res = genphy_update_link(phydev);
if (res < 0)
continue;
res = mv88e61xx_parse_status(phydev);
if (res < 0)
continue;
link = (link || phydev->link);
}
}
phydev->link = link;
/* Restore CPU interface speed and duplex after it was changed for
* other ports */
phydev->speed = speed;
phydev->duplex = duplex;
return 0;
}
static struct phy_driver mv88e61xx_driver = {
.name = "Marvell MV88E61xx",
.uid = 0x01410eb1,
.mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.probe = mv88e61xx_probe,
.config = mv88e61xx_phy_config,
.startup = mv88e61xx_phy_startup,
.shutdown = &genphy_shutdown,
};
static struct phy_driver mv88e609x_driver = {
.name = "Marvell MV88E609x",
.uid = 0x1410c89,
.mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.probe = mv88e61xx_probe,
.config = mv88e61xx_phy_config,
.startup = mv88e61xx_phy_startup,
.shutdown = &genphy_shutdown,
};
int phy_mv88e61xx_init(void)
{
phy_register(&mv88e61xx_driver);
phy_register(&mv88e609x_driver);
return 0;
}
/*
* Overload weak get_phy_id definition since we need non-standard functions
* to read PHY registers
*/
int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
{
struct phy_device temp_phy;
struct mv88e61xx_phy_priv temp_priv;
struct mii_dev temp_mii;
int val;
/*
* Buid temporary data structures that the chip reading code needs to
* read the ID
*/
temp_priv.mdio_bus = bus;
temp_priv.smi_addr = smi_addr;
temp_phy.priv = &temp_priv;
temp_mii.priv = &temp_phy;
val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
if (val < 0)
return -EIO;
*phy_id = val << 16;
val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
if (val < 0)
return -EIO;
*phy_id |= (val & 0xffff);
return 0;
}
|