summaryrefslogtreecommitdiff
path: root/drivers/ram/stm32mp1/stm32mp1_tuning.c
blob: 4e1c1fab54c42e1d35c676c5b7f5e63157d41991 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
 * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
 */
#include <common.h>
#include <console.h>
#include <clk.h>
#include <ram.h>
#include <reset.h>
#include <asm/io.h>

#include "stm32mp1_ddr_regs.h"
#include "stm32mp1_ddr.h"
#include "stm32mp1_tests.h"

#define MAX_DQS_PHASE_IDX _144deg
#define MAX_DQS_UNIT_IDX 7
#define MAX_GSL_IDX 5
#define MAX_GPS_IDX 3

/* Number of bytes used in this SW. ( min 1--> max 4). */
#define NUM_BYTES 4

enum dqs_phase_enum {
	_36deg = 0,
	_54deg = 1,
	_72deg = 2,
	_90deg = 3,
	_108deg = 4,
	_126deg = 5,
	_144deg = 6
};

/* BIST Result struct */
struct BIST_result {
	/* Overall test result:
	 * 0 Fail (any bit failed) ,
	 * 1 Success (All bits success)
	 */
	bool test_result;
	/* 1: true, all fail /  0: False, not all bits fail */
	bool all_bits_fail;
	bool bit_i_test_result[8];  /* 0 fail / 1 success */
};

/* a struct that defines tuning parameters of a byte. */
struct tuning_position {
	u8 phase; /* DQS phase */
	u8 unit; /* DQS unit delay */
	u32 bits_delay; /* Bits deskew in this byte */
};

/* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};

static u8 BIST_error_max = 1;
static u32 BIST_seed = 0x1234ABCD;

static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
{
	u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
	u8 nb_bytes = NUM_BYTES;

	switch (data_bus) {
	case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
		nb_bytes /= 2;
		break;
	case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
		nb_bytes /= 4;
		break;
	default:
		break;
	}

	return nb_bytes;
}

static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
{
	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
}

/* Read DQ unit delay register and provides the retrieved value for DQS
 * We are assuming that we have the same delay when clocking
 * by DQS and when clocking by DQSN
 */
static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
{
	u32 index;
	u32 addr = DXNDQTR(phy, byte);

	/* We are assuming that we have the same delay when clocking by DQS
	 * and when clocking by DQSN : use only the low bits
	 */
	index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
		& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;

	pr_debug("%s: [%x]: %x => DQ unit index = %x\n",
		 __func__, addr, readl(addr), index);

	return index;
}

/* Sets the DQS phase delay for a byte lane.
 *phase delay is specified by giving the index of the desired delay
 * in the dx_dll_phase array.
 */
static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
{
	u8 sdphase_val = 0;

	/*	Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
	sdphase_val = dx_dll_phase[phase_idx];
	clrsetbits_le32(DXNDLLCR(phy, byte),
			DDRPHYC_DXNDLLCR_SDPHASE_MASK,
			sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
}

/* Sets the DQS unit delay for a byte lane.
 * unit delay is specified by giving the index of the desired delay
 * for dgsdly and dqsndly (same value).
 */
static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
			   u8 byte, u8 unit_dly_idx)
{
	/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
	clrsetbits_le32(DXNDQSTR(phy, byte),
			DDRPHYC_DXNDQSTR_DQSDLY_MASK |
			DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));

	/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
	 * plus PIR.INIT=1) must be issued.
	 */
	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
}

/* Sets the DQ unit delay for a bit line in particular byte lane.
 * unit delay is specified by giving the desired delay
 */
static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
			      u8 byte, u8 bit,
			      u8 dq_delay_index)
{
	u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);

	/* same value on delay for clock DQ an DQS_b */
	clrsetbits_le32(DXNDQTR(phy, byte),
			DDRPHYC_DXNDQTR_DQDLY_MASK
			<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
			dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
}

static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
			     u8 byte, u8 r0dgsl_idx)
{
	clrsetbits_le32(DXNDQSTR(phy, byte),
			DDRPHYC_DXNDQSTR_R0DGSL_MASK,
			r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
}

static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
			     u8 byte, u8 r0dgps_idx)
{
	clrsetbits_le32(DXNDQSTR(phy, byte),
			DDRPHYC_DXNDQSTR_R0DGPS_MASK,
			r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
}

/* Basic BIST configuration for data lane tests. */
static void config_BIST(struct stm32mp1_ddrphy *phy)
{
	/* Selects the SDRAM bank address to be used during BIST. */
	u32 bbank = 0;
	/* Selects the SDRAM row address to be used during BIST. */
	u32 brow = 0;
	/* Selects the SDRAM column address to be used during BIST. */
	u32 bcol = 0;
	/* Selects the value by which the SDRAM address is incremented
	 * for each write/read access.
	 */
	u32 bainc = 0x00000008;
	/* Specifies the maximum SDRAM rank to be used during BIST.
	 * The default value is set to maximum ranks minus 1.
	 * must be 0 with single rank
	 */
	u32 bmrank = 0;
	/* Selects the SDRAM rank to be used during BIST.
	 * must be 0 with single rank
	 */
	u32 brank = 0;
	/* Specifies the maximum SDRAM bank address to be used during
	 * BIST before the address & increments to the next rank.
	 */
	u32 bmbank = 1;
	/* Specifies the maximum SDRAM row address to be used during
	 * BIST before the address & increments to the next bank.
	 */
	u32 bmrow = 0x7FFF; /* To check */
	/* Specifies the maximum SDRAM column address to be used during
	 * BIST before the address & increments to the next row.
	 */
	u32 bmcol = 0x3FF;  /* To check */
	u32 bmode_conf = 0x00000001;  /* DRam mode */
	u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */
	u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */

	/*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/
	/*Write BISTRR.BMODE = 1?b1;*/
	/*Write BISTRR.BDXEN = 1?b1;*/
	/*Write BISTRR.BDPAT = 2?b10;*/

	/* reset BIST */
	writel(0x3, &phy->bistrr);

	writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
	       &phy->bistrr);

	/*Setup BIST Word Count*/
	/*Write BISTWCR.BWCNT = 16?b0008;*/
	writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */

	writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
	writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);

	/* To check this line : */
	writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
}

/* Select the Byte lane to be tested by BIST. */
static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
{
	clrsetbits_le32(&phy->bistrr,
			DDRPHYC_BISTRR_BDXSEL_MASK,
			datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);

	/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
	/* Write BISTRR.BDXSEL = datx8; */
}

/* Perform BIST Write_Read test on a byte lane and return test result. */
static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
		      struct BIST_result *bist)
{
	bool result = true; /* BIST_SUCCESS */
	u32 cnt = 0;
	u32 error = 0;

	bist->test_result = true;

run:
	itm_soft_reset(phy);

	/*Perform BIST Reset*/
	/* Write BISTRR.BINST = 3?b011; */
	clrsetbits_le32(&phy->bistrr,
			0x00000007,
			0x00000003);

	/*Re-seed LFSR*/
	/* Write BISTLSR.SEED = 32'h1234ABCD; */
	if (BIST_seed)
		writel(BIST_seed, &phy->bistlsr);
	else
		writel(rand(), &phy->bistlsr);

	/* some delay to reset BIST */
	mdelay(1);

	/*Perform BIST Run*/
	clrsetbits_le32(&phy->bistrr,
			0x00000007,
			0x00000001);
	/* Write BISTRR.BINST = 3?b001; */

	/* Wait for a number of CTL clocks before reading BIST register*/
	/* Wait 300 ctl_clk cycles;  ... IS it really needed?? */
	/* Perform BIST Instruction Stop*/
	/* Write BISTRR.BINST = 3?b010;*/

	/* poll on BISTGSR.BDONE. If 0, wait.  ++TODO Add timeout */
	while (!(readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDDONE))
		;

	/*Check if received correct number of words*/
	/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
	if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT) ==
	    readl(&phy->bistwcr)) {
		/*Determine if there is a data comparison error*/
		/* if (Read BISTGSR.BDXERR = 1?b0) */
		if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
			result = false; /* BIST_FAIL; */
		else
			result = true; /* BIST_SUCCESS; */
	} else {
		result = false; /* BIST_FAIL; */
	}

	/* loop while success */
	cnt++;
	if (result && cnt != 1000)
		goto run;

	if (!result)
		error++;

	if (error < BIST_error_max) {
		if (cnt != 1000)
			goto run;
		bist->test_result = true;
	} else {
		bist->test_result = false;
	}
}

/* After running the deskew algo, this function applies the new DQ delays
 * by reading them from the array "deskew_delay"and writing in PHY registers.
 * The bits that are not deskewed parfectly (too much skew on them,
 * or data eye very wide) are marked in the array deskew_non_converge.
 */
static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
				 u8 deskew_delay[NUM_BYTES][8],
				 u8 deskew_non_converge[NUM_BYTES][8])
{
	u8  bit_i;
	u8  index;

	for (bit_i = 0; bit_i < 8; bit_i++) {
		set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
		index = DQ_unit_index(phy, byte, bit_i);
		pr_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
			 byte, bit_i, deskew_delay[byte][bit_i],
			 index, index - 3);
		printf("Byte %d, bit %d, DQ delay = %d",
		       byte, bit_i, deskew_delay[byte][bit_i]);
		if (deskew_non_converge[byte][bit_i] == 1)
			pr_debug(" - not converged : still more skew");
		printf("\n");
	}
}

/* DQ Bit de-skew algorithm.
 * Deskews data lines as much as possible.
 * 1. Add delay to DQS line until finding the failure
 *    (normally a hold time violation)
 * 2. Reduce DQS line by small steps until finding the very first time
 *    we go back to "Pass" condition.
 * 3. For each DQ line, Reduce DQ delay until finding the very first failure
 *    (normally a hold time fail)
 * 4. When all bits are at their first failure delay, we can consider them
 *    aligned.
 * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
 * at any step)
 * TODO Provide a return Status. Improve doc
 */
static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
				   struct stm32mp1_ddrphy *phy, char *string)
{
	/* New DQ delay value (index), set during Deskew algo */
	u8 deskew_delay[NUM_BYTES][8];
	/*If there is still skew on a bit, mark this bit. */
	u8 deskew_non_converge[NUM_BYTES][8];
	struct BIST_result result;
	s8 dqs_unit_delay_index = 0;
	u8 datx8 = 0;
	u8 bit_i = 0;
	s8 phase_idx = 0;
	s8 bit_i_delay_index = 0;
	u8 success = 0;
	struct tuning_position last_right_ok;
	u8 force_stop = 0;
	u8 fail_found;
	u8 error = 0;
	u8 nb_bytes = get_nb_bytes(ctl);
	/* u8 last_pass_dqs_unit = 0; */

	memset(deskew_delay, 0, sizeof(deskew_delay));
	memset(deskew_non_converge, 0, sizeof(deskew_non_converge));

	/*Disable DQS Drift Compensation*/
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
	/*Disable all bytes*/
	/* Disable automatic power down of DLL and IOs when disabling
	 * a byte (To avoid having to add programming and  delay
	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
	 */
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);

	/* Disable all data bytes */
	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);

	/* Config the BIST block */
	config_BIST(phy);
	pr_debug("BIST Config done.\n");

	/* Train each byte */
	for (datx8 = 0; datx8 < nb_bytes; datx8++) {
		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				datx8 + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		pr_debug("\n======================\n");
		pr_debug("Start deskew byte %d .\n", datx8);
		pr_debug("======================\n");
		/* Enable Byte (DXNGCR, bit DXEN) */
		setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);

		/* Select the byte lane for comparison of read data */
		BIST_datx8_sel(phy, datx8);

		/* Set all DQDLYn to maximum value. All bits within the byte
		 * will be delayed with DQSTR = 2 instead of max = 3
		 * to avoid inter bits fail influence
		 */
		writel(0xAAAAAAAA, DXNDQTR(phy, datx8));

		/* Set the DQS phase delay to 90 DEG (default).
		 * What is defined here is the index of the desired config
		 * in the PHASE array.
		 */
		phase_idx = _90deg;

		/* Set DQS unit delay to the max value. */
		dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
		DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
		DQS_phase_delay(phy, datx8, phase_idx);

		/* Issue a DLL soft reset */
		clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
		setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);

		/* Test this typical init condition */
		BIST_test(phy, datx8, &result);
		success = result.test_result;

		/* If the test pass in this typical condition,
		 * start the algo with it.
		 * Else, look for Pass init condition
		 */
		if (!success) {
			pr_debug("Fail at init condtion. Let's look for a good init condition.\n");
			success = 0; /* init */
			/* Make sure we start with a PASS condition before
			 * looking for a fail condition.
			 * Find the first PASS PHASE condition
			 */

			/* escape if we find a PASS */
			pr_debug("increase Phase idx\n");
			while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
				DQS_phase_delay(phy, datx8, phase_idx);
				BIST_test(phy, datx8, &result);
				success = result.test_result;
				phase_idx++;
			}
			/* if ended with success
			 * ==>> Restore the fist success condition
			 */
			if (success)
				phase_idx--; /* because it ended with ++ */
		}
		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				datx8 + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		/* We couldn't find a successful condition, its seems
		 * we have hold violation, lets try reduce DQS_unit Delay
		 */
		if (!success) {
			/* We couldn't find a successful condition, its seems
			 * we have hold violation, lets try reduce DQS_unit
			 * Delay
			 */
			pr_debug("Still fail. Try decrease DQS Unit delay\n");

			phase_idx = 0;
			dqs_unit_delay_index = 0;
			DQS_phase_delay(phy, datx8, phase_idx);

			/* escape if we find a PASS */
			while (!success &&
			       (dqs_unit_delay_index <=
				MAX_DQS_UNIT_IDX)) {
				DQS_unit_delay(phy, datx8,
					       dqs_unit_delay_index);
				BIST_test(phy, datx8, &result);
				success = result.test_result;
				dqs_unit_delay_index++;
			}
			if (success) {
				/* Restore the first success condition*/
				dqs_unit_delay_index--;
				/* last_pass_dqs_unit = dqs_unit_delay_index;*/
				DQS_unit_delay(phy, datx8,
					       dqs_unit_delay_index);
			} else {
				/* No need to continue,
				 * there is no pass region.
				 */
				force_stop = 1;
			}
		}

		/* There is an initial PASS condition
		 * Look for the first failing condition by PHASE stepping.
		 * This part of the algo can finish without converging.
		 */
		if (force_stop) {
			printf("Result: Failed ");
			printf("[Cannot Deskew lines, ");
			printf("there is no PASS region]\n");
			error++;
			continue;
		}
		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				datx8 + 1, nb_bytes, error);
			return TEST_FAILED;
		}

		pr_debug("there is a pass region for phase idx %d\n",
			 phase_idx);
		pr_debug("Step1: Find the first failing condition\n");
		/* Look for the first failing condition by PHASE stepping.
		 * This part of the algo can finish without converging.
		 */

		/* escape if we find a fail (hold time violation)
		 * condition at any bit or if out of delay range.
		 */
		while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
			DQS_phase_delay(phy, datx8, phase_idx);
			BIST_test(phy, datx8, &result);
			success = result.test_result;
			phase_idx++;
		}
		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				datx8 + 1, nb_bytes, error);
			return TEST_FAILED;
		}

		/* if the loop ended with a failing condition at any bit,
		 * lets look for the first previous success condition by unit
		 * stepping (minimal delay)
		 */
		if (!success) {
			pr_debug("Fail region (PHASE) found phase idx %d\n",
				 phase_idx);
			pr_debug("Let's look for first success by DQS Unit steps\n");
			/* This part, the algo always converge */
			phase_idx--;

			/* escape if we find a success condition
			 * or if out of delay range.
			 */
			while (!success && dqs_unit_delay_index >= 0) {
				DQS_unit_delay(phy, datx8,
					       dqs_unit_delay_index);
				BIST_test(phy, datx8, &result);
				success = result.test_result;
				dqs_unit_delay_index--;
			}
			/* if the loop ended with a success condition,
			 * the last delay Right OK (before hold violation)
			 *  condition is then defined as following:
			 */
			if (success) {
				/* Hold the dely parameters of the the last
				 * delay Right OK condition.
				 * -1 to get back to current condition
				 */
				last_right_ok.phase = phase_idx;
				/*+1 to get back to current condition */
				last_right_ok.unit = dqs_unit_delay_index + 1;
				last_right_ok.bits_delay = 0xFFFFFFFF;
				pr_debug("Found %d\n", dqs_unit_delay_index);
			} else {
				/* the last OK condition is then with the
				 * previous phase_idx.
				 * -2 instead of -1 because at the last
				 * iteration of the while(),
				 * we incremented phase_idx
				 */
				last_right_ok.phase = phase_idx - 1;
				/* Nominal+1. Because we want the previous
				 * delay after reducing the phase delay.
				 */
				last_right_ok.unit = 1;
				last_right_ok.bits_delay = 0xFFFFFFFF;
				pr_debug("Not Found : try previous phase %d\n",
					 phase_idx - 1);

				DQS_phase_delay(phy, datx8, phase_idx - 1);
				dqs_unit_delay_index = 0;
				success = true;
				while (success &&
				       (dqs_unit_delay_index <
					MAX_DQS_UNIT_IDX)) {
					DQS_unit_delay(phy, datx8,
						       dqs_unit_delay_index);
					BIST_test(phy, datx8, &result);
					success = result.test_result;
					dqs_unit_delay_index++;
					pr_debug("dqs_unit_delay_index = %d, result = %d\n",
						 dqs_unit_delay_index, success);
				}

				if (!success) {
					last_right_ok.unit =
						 dqs_unit_delay_index - 1;
				} else {
					last_right_ok.unit = 0;
					pr_debug("ERROR: failed region not FOUND");
				}
			}
		} else {
			/* we can't find a failing  condition at all bits
			 * ==> Just hold the last test condition
			 * (the max DQS delay)
			 * which is the most likely,
			 * the closest to a hold violation
			 * If we can't find a Fail condition after
			 * the Pass region, stick at this position
			 * In order to have max chances to find a fail
			 * when reducing DQ delays.
			 */
			last_right_ok.phase = MAX_DQS_PHASE_IDX;
			last_right_ok.unit = MAX_DQS_UNIT_IDX;
			last_right_ok.bits_delay = 0xFFFFFFFF;
			pr_debug("Can't find the a fail condition\n");
		}

		/* step 2:
		 * if we arrive at this stage, it means that we found the last
		 * Right OK condition (by tweeking the DQS delay). Or we simply
		 * pushed DQS delay to the max
		 * This means that by reducing the delay on some DQ bits,
		 * we should find a failing condition.
		 */
		printf("Byte %d, DQS unit = %d, phase = %d\n",
		       datx8, last_right_ok.unit, last_right_ok.phase);
		pr_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
			 last_right_ok.unit, last_right_ok.phase,
			 last_right_ok.bits_delay);

		/* Restore the last_right_ok condtion. */
		DQS_unit_delay(phy, datx8, last_right_ok.unit);
		DQS_phase_delay(phy, datx8, last_right_ok.phase);
		writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));

		/* train each bit
		 * reduce delay on each bit, and perform a write/read test
		 * and stop at the very first time it fails.
		 * the goal is the find the first failing condition
		 * for each bit.
		 * When we achieve this condition<  for all the bits,
		 * we are sure they are aligned (+/- step resolution)
		 */
		fail_found = 0;
		for (bit_i = 0; bit_i < 8; bit_i++) {
			if (ctrlc()) {
				sprintf(string,
					"interrupted at byte %d/%d, error=%d",
					datx8 + 1, nb_bytes, error);
				return error;
			}
			pr_debug("deskewing bit %d:\n", bit_i);
			success = 1; /* init */
			/* Set all DQDLYn to maximum value.
			 * Only bit_i will be down-delayed
			 * ==> if we have a fail, it will be definitely
			 *     from bit_i
			 */
			writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
			/* Arriving at this stage,
			 * we have a success condition with delay = 3;
			 */
			bit_i_delay_index = 3;

			/* escape if bit delay is out of range or
			 * if a fatil occurs
			 */
			while ((bit_i_delay_index >= 0) && success) {
				set_DQ_unit_delay(phy, datx8,
						  bit_i,
						  bit_i_delay_index);
				BIST_test(phy, datx8, &result);
				success = result.test_result;
				bit_i_delay_index--;
			}

			/* if escape with a fail condition
			 * ==> save this position for bit_i
			 */
			if (!success) {
				/* save the delay position.
				 * Add 1 because the while loop ended with a --,
				 * and that we need to hold the last success
				 *  delay
				 */
				deskew_delay[datx8][bit_i] =
					bit_i_delay_index + 2;
				if (deskew_delay[datx8][bit_i] > 3)
					deskew_delay[datx8][bit_i] = 3;

				/* A flag that states we found at least a fail
				 * at one bit.
				 */
				fail_found = 1;
				pr_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
					 bit_i, bit_i_delay_index + 1,
					 datx8, bit_i,
					 deskew_delay[datx8][bit_i]);
			} else {
				/* if we can find a success condition by
				 * back-delaying this bit, just set the delay
				 * to 0 (the best deskew
				 * possible) and mark the bit.
				 */
				deskew_delay[datx8][bit_i] = 0;
				/* set a flag that will be used later
				 * in the report.
				 */
				deskew_non_converge[datx8][bit_i] = 1;
				pr_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
					 bit_i, datx8, bit_i,
					 deskew_delay[datx8][bit_i]);
			}
		}
		pr_debug("**********byte %d tuning complete************\n",
			 datx8);
		/* If we can't find any failure by back delaying DQ lines,
		 * hold the default values
		 */
		if (!fail_found) {
			for (bit_i = 0; bit_i < 8; bit_i++)
				deskew_delay[datx8][bit_i] = 0;
			pr_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
		}

		apply_deskew_results(phy, datx8, deskew_delay,
				     deskew_non_converge);
		/* Restore nominal value for DQS delay */
		DQS_phase_delay(phy, datx8, 3);
		DQS_unit_delay(phy, datx8, 3);
		/* disable byte after byte bits deskew */
		clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
	}  /* end of byte deskew */

	/* re-enable all data bytes */
	setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
	setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
	setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
	setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);

	if (error) {
		sprintf(string, "error = %d", error);
		return TEST_FAILED;
	}

	return TEST_PASSED;
} /* end function */

/* Trim DQS timings and set it in the centre of data eye.
 * Look for a PPPPF region, then look for a FPPP region and finally select
 * the mid of the FPPPPPF region
 */
static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
				     struct stm32mp1_ddrphy *phy, char *string)
{
	/*Stores the DQS trim values (PHASE index, unit index) */
	u8 eye_training_val[NUM_BYTES][2];
	u8 byte = 0;
	struct BIST_result result;
	s8 dqs_unit_delay_index = 0;
	s8 phase_idx = 0;
	s8 dqs_unit_delay_index_pass = 0;
	s8 phase_idx_pass = 0;
	u8 success = 0;
	u8 left_phase_bound_found, right_phase_bound_found;
	u8 left_unit_bound_found, right_unit_bound_found;
	u8 left_bound_found, right_bound_found;
	struct tuning_position left_bound, right_bound;
	u8 error = 0;
	u8 nb_bytes = get_nb_bytes(ctl);

	/*Disable DQS Drift Compensation*/
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
	/*Disable all bytes*/
	/* Disable automatic power down of DLL and IOs when disabling a byte
	 * (To avoid having to add programming and  delay
	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
	 */
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);

	/*Disable all data bytes */
	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);

	/* Config the BIST block */
	config_BIST(phy);

	for (byte = 0; byte < nb_bytes; byte++) {
		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				byte + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		right_bound.phase = 0;
		right_bound.unit = 0;

		left_bound.phase = 0;
		left_bound.unit = 0;

		left_phase_bound_found = 0;
		right_phase_bound_found = 0;

		left_unit_bound_found = 0;
		right_unit_bound_found = 0;

		left_bound_found = 0;
		right_bound_found = 0;

		/* Enable Byte (DXNGCR, bit DXEN) */
		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);

		/* Select the byte lane for comparison of read data */
		BIST_datx8_sel(phy, byte);

		/* Set DQS phase delay to the nominal value. */
		phase_idx = _90deg;
		phase_idx_pass = phase_idx;

		/* Set DQS unit delay to the nominal value. */
		dqs_unit_delay_index = 3;
		dqs_unit_delay_index_pass = dqs_unit_delay_index;
		success = 0;

		pr_debug("STEP0: Find Init delay\n");
		/* STEP0: Find Init delay: a delay that put the system
		 * in a "Pass" condition then (TODO) update
		 * dqs_unit_delay_index_pass & phase_idx_pass
		 */
		DQS_unit_delay(phy, byte, dqs_unit_delay_index);
		DQS_phase_delay(phy, byte, phase_idx);
		BIST_test(phy, byte, &result);
		success = result.test_result;
		/* If we have a fail in the nominal condition */
		if (!success) {
			/* Look at the left */
			while (phase_idx >= 0 && !success) {
				phase_idx--;
				DQS_phase_delay(phy, byte, phase_idx);
				BIST_test(phy, byte, &result);
				success = result.test_result;
			}
		}
		if (!success) {
			/* if we can't find pass condition,
			 * then look at the right
			 */
			phase_idx = _90deg;
			while (phase_idx <= MAX_DQS_PHASE_IDX &&
			       !success) {
				phase_idx++;
				DQS_phase_delay(phy, byte,
						phase_idx);
				BIST_test(phy, byte, &result);
				success = result.test_result;
			}
		}
		/* save the pass condition */
		if (success) {
			phase_idx_pass = phase_idx;
		} else {
			printf("Result: Failed ");
			printf("[Cannot DQS timings, ");
			printf("there is no PASS region]\n");
			error++;
			continue;
		}

		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				byte + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		pr_debug("STEP1: Find LEFT PHASE DQS Bound\n");
		/* STEP1: Find LEFT PHASE DQS Bound */
		while ((phase_idx >= 0) &&
		       (phase_idx <= MAX_DQS_PHASE_IDX) &&
		       !left_phase_bound_found) {
			DQS_unit_delay(phy, byte,
				       dqs_unit_delay_index);
			DQS_phase_delay(phy, byte,
					phase_idx);
			BIST_test(phy, byte, &result);
			success = result.test_result;

			/*TODO: Manage the case were at the beginning
			 * there is already a fail
			 */
			if (!success) {
				/* the last pass condition */
				left_bound.phase = ++phase_idx;
				left_phase_bound_found = 1;
			} else if (success) {
				phase_idx--;
			}
		}
		if (!left_phase_bound_found) {
			left_bound.phase = 0;
			phase_idx = 0;
		}
		/* If not found, lets take 0 */

		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				byte + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		pr_debug("STEP2: Find UNIT left bound\n");
		/* STEP2: Find UNIT left bound */
		while ((dqs_unit_delay_index >= 0) &&
		       !left_unit_bound_found) {
			DQS_unit_delay(phy, byte,
				       dqs_unit_delay_index);
			DQS_phase_delay(phy, byte, phase_idx);
			BIST_test(phy, byte, &result);
			success = result.test_result;
			if (!success) {
				left_bound.unit =
					++dqs_unit_delay_index;
				left_unit_bound_found = 1;
				left_bound_found = 1;
			} else if (success) {
				dqs_unit_delay_index--;
			}
		}

		/* If not found, lets take 0 */
		if (!left_unit_bound_found)
			left_bound.unit = 0;

		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				byte + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		pr_debug("STEP3: Find PHase right bound\n");
		/* STEP3: Find PHase right bound, start with "pass"
		 * condition
		 */

		/* Set DQS phase delay to the pass value. */
		phase_idx = phase_idx_pass;

		/* Set DQS unit delay to the pass value. */
		dqs_unit_delay_index = dqs_unit_delay_index_pass;

		while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
		       !right_phase_bound_found) {
			DQS_unit_delay(phy, byte,
				       dqs_unit_delay_index);
			DQS_phase_delay(phy, byte, phase_idx);
			BIST_test(phy, byte, &result);
			success = result.test_result;
			if (!success) {
				/* the last pass condition */
				right_bound.phase = --phase_idx;
				right_phase_bound_found = 1;
			} else if (success) {
				phase_idx++;
			}
		}

		/* If not found, lets take the max value */
		if (!right_phase_bound_found) {
			right_bound.phase = MAX_DQS_PHASE_IDX;
			phase_idx = MAX_DQS_PHASE_IDX;
		}

		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d, error=%d",
				byte + 1, nb_bytes, error);
			return TEST_FAILED;
		}
		pr_debug("STEP4: Find UNIT right bound\n");
		/* STEP4: Find UNIT right bound */
		while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
		       !right_unit_bound_found) {
			DQS_unit_delay(phy, byte,
				       dqs_unit_delay_index);
			DQS_phase_delay(phy, byte, phase_idx);
			BIST_test(phy, byte, &result);
			success = result.test_result;
			if (!success) {
				right_bound.unit =
					--dqs_unit_delay_index;
				right_unit_bound_found = 1;
				right_bound_found = 1;
			} else if (success) {
				dqs_unit_delay_index++;
			}
		}
		/* If not found, lets take the max value */
		if (!right_unit_bound_found)
			right_bound.unit = MAX_DQS_UNIT_IDX;

		/* If we found a regular FAil Pass FAil pattern
		 * FFPPPPPPFF
		 * OR PPPPPFF  Or FFPPPPP
		 */

		if (left_bound_found || right_bound_found) {
			eye_training_val[byte][0] = (right_bound.phase +
						 left_bound.phase) / 2;
			eye_training_val[byte][1] = (right_bound.unit +
						 left_bound.unit) / 2;

			/* If we already lost 1/2PHASE Tuning,
			 * let's try to recover by ++ on unit
			 */
			if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
			    eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
				eye_training_val[byte][1]++;
			pr_debug("** found phase : %d -  %d & unit %d - %d\n",
				 right_bound.phase, left_bound.phase,
				 right_bound.unit, left_bound.unit);
			pr_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n",
				 eye_training_val[byte][0],
				 eye_training_val[byte][1]);
		} else {
			/* PPPPPPPPPP, we're already good.
			 * Set nominal values.
			 */
			eye_training_val[byte][0] = 3;
			eye_training_val[byte][1] = 3;
		}
		DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
		DQS_unit_delay(phy, byte, eye_training_val[byte][1]);

		printf("Byte %d, DQS unit = %d, phase = %d\n",
		       byte,
		       eye_training_val[byte][1],
		       eye_training_val[byte][0]);
	}

	if (error) {
		sprintf(string, "error = %d", error);
		return TEST_FAILED;
	}

	return TEST_PASSED;
}

static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
{
	u8 i = 0;

	printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ",
	       byte);

	for (i = 0; i < 8; i++)
		printf("%d ", DQ_unit_index(phy, byte, i));
	printf("\n");

	printf("dxndllcr: [%08x] val:%08x\n",
	       DXNDLLCR(phy, byte),
	       readl(DXNDLLCR(phy, byte)));
	printf("dxnqdstr: [%08x] val:%08x\n",
	       DXNDQSTR(phy, byte),
	       readl(DXNDQSTR(phy, byte)));
	printf("dxndqtr: [%08x] val:%08x\n",
	       DXNDQTR(phy, byte),
	       readl(DXNDQTR(phy, byte)));
}

/* analyse the dgs gating log table, and determine the midpoint.*/
static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
				       u8 dqs_gating[NUM_BYTES]
						    [MAX_GSL_IDX + 1]
						    [MAX_GPS_IDX + 1])
{
	/* stores the dqs gate values (gsl index, gps index) */
	u8 dqs_gate_values[NUM_BYTES][2];
	u8 gsl_idx, gps_idx = 0;
	u8 left_bound_idx[2] = {0, 0};
	u8 right_bound_idx[2] = {0, 0};
	u8 left_bound_found = 0;
	u8 right_bound_found = 0;
	u8 intermittent = 0;
	u8 value;

	for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
		for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
			value = dqs_gating[byte][gsl_idx][gps_idx];
			if (value == 1 && left_bound_found == 0) {
				left_bound_idx[0] = gsl_idx;
				left_bound_idx[1] = gps_idx;
				left_bound_found = 1;
			} else if (value == 0 &&
				   left_bound_found == 1 &&
				   !right_bound_found) {
				if (gps_idx == 0) {
					right_bound_idx[0] = gsl_idx - 1;
					right_bound_idx[1] = MAX_GPS_IDX;
				} else {
					right_bound_idx[0] = gsl_idx;
					right_bound_idx[1] = gps_idx - 1;
				}
				right_bound_found = 1;
			} else if (value == 1 &&
				   right_bound_found == 1) {
				intermittent = 1;
			}
		}
	}

	/* if only ppppppp is found, there is no mid region. */
	if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
	    right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
		intermittent = 1;

	/*if we found a regular fail pass fail pattern ffppppppff
	 * or pppppff  or ffppppp
	 */
	if (!intermittent) {
		/*if we found a regular fail pass fail pattern ffppppppff
		 * or pppppff  or ffppppp
		 */
		if (left_bound_found || right_bound_found) {
			pr_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n",
				 left_bound_found,
				 right_bound_idx[0], left_bound_idx[0],
				 right_bound_found,
				 right_bound_idx[1], left_bound_idx[1]);
			dqs_gate_values[byte][0] =
				(right_bound_idx[0] + left_bound_idx[0]) / 2;
			dqs_gate_values[byte][1] =
				(right_bound_idx[1] + left_bound_idx[1]) / 2;
			/* if we already lost 1/2gsl tuning,
			 * let's try to recover by ++ on gps
			 */
			if (((right_bound_idx[0] +
			      left_bound_idx[0]) % 2 == 1) &&
			    dqs_gate_values[byte][1] != MAX_GPS_IDX)
				dqs_gate_values[byte][1]++;
			/* if we already lost 1/2gsl tuning and gps is on max*/
			else if (((right_bound_idx[0] +
				   left_bound_idx[0]) % 2 == 1) &&
				 dqs_gate_values[byte][1] == MAX_GPS_IDX) {
				dqs_gate_values[byte][1] = 0;
				dqs_gate_values[byte][0]++;
			}
			/* if we have gsl left and write limit too close
			 * (difference=1)
			 */
			if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
				dqs_gate_values[byte][1] = (left_bound_idx[1] +
							    right_bound_idx[1] +
							    4) / 2;
				if (dqs_gate_values[byte][1] >= 4) {
					dqs_gate_values[byte][0] =
						right_bound_idx[0];
					dqs_gate_values[byte][1] -= 4;
				} else {
					dqs_gate_values[byte][0] =
						left_bound_idx[0];
				}
			}
			pr_debug("*******calculating mid region: system latency: %d  phase: %d********\n",
				 dqs_gate_values[byte][0],
				 dqs_gate_values[byte][1]);
			pr_debug("*******the nominal values were system latency: 0  phase: 2*******\n");
			set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
			set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
		}
	} else {
		/* if intermitant, restore defaut values */
		pr_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
		set_r0dgsl_delay(phy, byte, 0);
		set_r0dgps_delay(phy, byte, 2);
	}

	/* return 0 if intermittent or if both left_bound
	 * and right_bound are not found
	 */
	return !(intermittent || (left_bound_found && right_bound_found));
}

static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
					struct stm32mp1_ddrphy *phy,
					char *string)
{
	/* stores the log of pass/fail */
	u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
	u8 byte, gsl_idx, gps_idx = 0;
	struct BIST_result result;
	u8 success = 0;
	u8 nb_bytes = get_nb_bytes(ctl);

	memset(dqs_gating, 0x0, sizeof(dqs_gating));

	/*disable dqs drift compensation*/
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
	/*disable all bytes*/
	/* disable automatic power down of dll and ios when disabling a byte
	 * (to avoid having to add programming and  delay
	 * for a dll re-lock when later re-enabling a disabled byte lane)
	 */
	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);

	/* disable all data bytes */
	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);

	/* config the bist block */
	config_BIST(phy);

	for (byte = 0; byte < nb_bytes; byte++) {
		if (ctrlc()) {
			sprintf(string, "interrupted at byte %d/%d",
				byte + 1, nb_bytes);
			return TEST_FAILED;
		}
		/* enable byte x (dxngcr, bit dxen) */
		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);

		/* select the byte lane for comparison of read data */
		BIST_datx8_sel(phy, byte);
		for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
			for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
				if (ctrlc()) {
					sprintf(string,
						"interrupted at byte %d/%d",
						byte + 1, nb_bytes);
					return TEST_FAILED;
				}
				/* write cfg to dxndqstr */
				set_r0dgsl_delay(phy, byte, gsl_idx);
				set_r0dgps_delay(phy, byte, gps_idx);

				BIST_test(phy, byte, &result);
				success = result.test_result;
				if (success)
					dqs_gating[byte][gsl_idx][gps_idx] = 1;
				itm_soft_reset(phy);
			}
		}
		set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
		/* dummy reads */
		readl(0xc0000000);
		readl(0xc0000000);
	}

	/* re-enable drift compensation */
	/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
	return TEST_PASSED;
}

/****************************************************************
 * TEST
 ****************************************************************
 */
static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
					   struct stm32mp1_ddrphy *phy,
					   char *string, int argc,
					   char *argv[])
{
	u32 rfshctl3 = readl(&ctl->rfshctl3);
	u32 pwrctl = readl(&ctl->pwrctl);
	enum test_result res;

	stm32mp1_refresh_disable(ctl);
	res = read_dqs_gating(ctl, phy, string);
	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);

	return res;
}

static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
				      struct stm32mp1_ddrphy *phy,
				      char *string, int argc, char *argv[])
{
	u32 rfshctl3 = readl(&ctl->rfshctl3);
	u32 pwrctl = readl(&ctl->pwrctl);
	enum test_result res;

	stm32mp1_refresh_disable(ctl);
	res = bit_deskew(ctl, phy, string);
	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);

	return res;
}

static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
					struct stm32mp1_ddrphy *phy,
					char *string, int argc, char *argv[])
{
	u32 rfshctl3 = readl(&ctl->rfshctl3);
	u32 pwrctl = readl(&ctl->pwrctl);
	enum test_result res;

	stm32mp1_refresh_disable(ctl);
	res = eye_training(ctl, phy, string);
	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);

	return res;
}

static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
				   struct stm32mp1_ddrphy *phy,
				   char *string, int argc, char *argv[])
{
	int byte;
	u8 nb_bytes = get_nb_bytes(ctl);

	for (byte = 0; byte < nb_bytes; byte++)
		display_reg_results(phy, byte);

	return TEST_PASSED;
}

static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
				       struct stm32mp1_ddrphy *phy,
				       char *string, int argc, char *argv[])
{
	unsigned long value;

	if (argc > 0) {
		if (strict_strtoul(argv[0], 0, &value) < 0) {
			sprintf(string, "invalid nbErr %s", argv[0]);
			return TEST_FAILED;
		}
		BIST_error_max = value;
	}
	if (argc > 1) {
		if (strict_strtoul(argv[1], 0, &value) < 0) {
			sprintf(string, "invalid Seed %s", argv[1]);
			return TEST_FAILED;
		}
		BIST_seed = value;
	}
	printf("Bist.nbErr = %d\n", BIST_error_max);
	if (BIST_seed)
		printf("Bist.Seed = 0x%x\n", BIST_seed);
	else
		printf("Bist.Seed = random\n");

	return TEST_PASSED;
}

/****************************************************************
 * TEST Description
 ****************************************************************
 */

const struct test_desc tuning[] = {
	{do_read_dqs_gating, "Read DQS gating",
		"software read DQS Gating", "", 0 },
	{do_bit_deskew, "Bit de-skew", "", "", 0 },
	{do_eye_training, "Eye Training", "or DQS training", "", 0 },
	{do_display, "Display registers", "", "", 0 },
	{do_bist_config, "Bist config", "[nbErr] [seed]",
	 "configure Bist test", 2},
};

const int tuning_nb = ARRAY_SIZE(tuning);