summaryrefslogtreecommitdiff
path: root/drivers/rtc/stm32_rtc.c
blob: f9db318af1dcea4d231e5d86a4c9d2192818a655 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
 * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
 */
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <malloc.h>
#include <rtc.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/iopoll.h>

#define STM32_RTC_TR		0x00
#define STM32_RTC_DR		0x04
#define STM32_RTC_ISR		0x0C
#define STM32_RTC_PRER		0x10
#define STM32_RTC_CR		0x18
#define STM32_RTC_WPR		0x24

/* STM32_RTC_TR bit fields  */
#define STM32_RTC_SEC_SHIFT	0
#define STM32_RTC_SEC		GENMASK(6, 0)
#define STM32_RTC_MIN_SHIFT	8
#define STM32_RTC_MIN		GENMASK(14, 8)
#define STM32_RTC_HOUR_SHIFT	16
#define STM32_RTC_HOUR		GENMASK(21, 16)

/* STM32_RTC_DR bit fields */
#define STM32_RTC_DATE_SHIFT	0
#define STM32_RTC_DATE		GENMASK(5, 0)
#define STM32_RTC_MONTH_SHIFT	8
#define STM32_RTC_MONTH		GENMASK(12, 8)
#define STM32_RTC_WDAY_SHIFT	13
#define STM32_RTC_WDAY		GENMASK(15, 13)
#define STM32_RTC_YEAR_SHIFT	16
#define STM32_RTC_YEAR		GENMASK(23, 16)

/* STM32_RTC_CR bit fields */
#define STM32_RTC_CR_FMT	BIT(6)

/* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
#define STM32_RTC_ISR_INITS	BIT(4)
#define STM32_RTC_ISR_RSF	BIT(5)
#define STM32_RTC_ISR_INITF	BIT(6)
#define STM32_RTC_ISR_INIT	BIT(7)

/* STM32_RTC_PRER bit fields */
#define STM32_RTC_PRER_PRED_S_SHIFT	0
#define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
#define STM32_RTC_PRER_PRED_A_SHIFT	16
#define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)

/* STM32_RTC_WPR key constants */
#define RTC_WPR_1ST_KEY		0xCA
#define RTC_WPR_2ND_KEY		0x53
#define RTC_WPR_WRONG_KEY	0xFF

struct stm32_rtc_priv {
	fdt_addr_t base;
};

static int stm32_rtc_get(struct udevice *dev, struct rtc_time *tm)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	u32 tr, dr;

	tr = readl(priv->base + STM32_RTC_TR);
	dr = readl(priv->base + STM32_RTC_DR);

	tm->tm_sec = bcd2bin((tr & STM32_RTC_SEC) >> STM32_RTC_SEC_SHIFT);
	tm->tm_min = bcd2bin((tr & STM32_RTC_MIN) >> STM32_RTC_MIN_SHIFT);
	tm->tm_hour = bcd2bin((tr & STM32_RTC_HOUR) >> STM32_RTC_HOUR_SHIFT);

	tm->tm_mday = bcd2bin((dr & STM32_RTC_DATE) >> STM32_RTC_DATE_SHIFT);
	tm->tm_mon = bcd2bin((dr & STM32_RTC_MONTH) >> STM32_RTC_MONTH_SHIFT);
	tm->tm_year = 2000 +
		      bcd2bin((dr & STM32_RTC_YEAR) >> STM32_RTC_YEAR_SHIFT);
	tm->tm_wday = bcd2bin((dr & STM32_RTC_WDAY) >> STM32_RTC_WDAY_SHIFT);
	tm->tm_yday = 0;
	tm->tm_isdst = 0;

	dev_dbg(dev, "Get DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
		tm->tm_hour, tm->tm_min, tm->tm_sec);

	return 0;
}

static void stm32_rtc_unlock(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);

	writel(RTC_WPR_1ST_KEY, priv->base + STM32_RTC_WPR);
	writel(RTC_WPR_2ND_KEY, priv->base + STM32_RTC_WPR);
}

static void stm32_rtc_lock(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);

	writel(RTC_WPR_WRONG_KEY, priv->base + STM32_RTC_WPR);
}

static int stm32_rtc_enter_init_mode(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	u32 isr = readl(priv->base + STM32_RTC_ISR);

	if (!(isr & STM32_RTC_ISR_INITF)) {
		isr |= STM32_RTC_ISR_INIT;
		writel(isr, priv->base + STM32_RTC_ISR);

		return readl_poll_timeout(priv->base + STM32_RTC_ISR,
					  isr,
					  (isr & STM32_RTC_ISR_INITF),
					  100000);
	}

	return 0;
}

static int stm32_rtc_wait_sync(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	u32 isr = readl(priv->base + STM32_RTC_ISR);

	isr &= ~STM32_RTC_ISR_RSF;
	writel(isr, priv->base + STM32_RTC_ISR);

	/*
	 * Wait for RSF to be set to ensure the calendar registers are
	 * synchronised, it takes around 2 rtc_ck clock cycles
	 */
	return readl_poll_timeout(priv->base + STM32_RTC_ISR,
				  isr, (isr & STM32_RTC_ISR_RSF),
				  100000);
}

static void stm32_rtc_exit_init_mode(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	u32 isr = readl(priv->base + STM32_RTC_ISR);

	isr &= ~STM32_RTC_ISR_INIT;
	writel(isr, priv->base + STM32_RTC_ISR);
}

static int stm32_rtc_set_time(struct udevice *dev, u32 time, u32 date)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	int ret;

	stm32_rtc_unlock(dev);

	ret = stm32_rtc_enter_init_mode(dev);
	if (ret)
		goto lock;

	writel(time, priv->base + STM32_RTC_TR);
	writel(date, priv->base + STM32_RTC_DR);

	stm32_rtc_exit_init_mode(dev);

	ret = stm32_rtc_wait_sync(dev);

lock:
	stm32_rtc_lock(dev);
	return ret;
}

static int stm32_rtc_set(struct udevice *dev, const struct rtc_time *tm)
{
	u32 t, d;

	dev_dbg(dev, "Set DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
		tm->tm_hour, tm->tm_min, tm->tm_sec);

	if (tm->tm_year < 2000 || tm->tm_year > 2099)
		return -EINVAL;

	/* Time in BCD format */
	t = (bin2bcd(tm->tm_sec) << STM32_RTC_SEC_SHIFT) & STM32_RTC_SEC;
	t |= (bin2bcd(tm->tm_min) << STM32_RTC_MIN_SHIFT) & STM32_RTC_MIN;
	t |= (bin2bcd(tm->tm_hour) << STM32_RTC_HOUR_SHIFT) & STM32_RTC_HOUR;

	/* Date in BCD format */
	d = (bin2bcd(tm->tm_mday) << STM32_RTC_DATE_SHIFT) & STM32_RTC_DATE;
	d |= (bin2bcd(tm->tm_mon) << STM32_RTC_MONTH_SHIFT) & STM32_RTC_MONTH;
	d |= (bin2bcd(tm->tm_year - 2000) << STM32_RTC_YEAR_SHIFT) &
	      STM32_RTC_YEAR;
	d |= (bin2bcd(tm->tm_wday) << STM32_RTC_WDAY_SHIFT) & STM32_RTC_WDAY;

	return stm32_rtc_set_time(dev, t, d);
}

static int stm32_rtc_reset(struct udevice *dev)
{
	dev_dbg(dev, "Reset DATE\n");

	return stm32_rtc_set_time(dev, 0, 0);
}

static int stm32_rtc_init(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
	unsigned int rate;
	struct clk clk;
	int ret;
	u32 isr = readl(priv->base + STM32_RTC_ISR);

	if (isr & STM32_RTC_ISR_INITS)
		return  0;

	ret = clk_get_by_index(dev, 1, &clk);
	if (ret)
		return ret;

	ret = clk_enable(&clk);
	if (ret) {
		clk_free(&clk);
		return ret;
	}

	rate = clk_get_rate(&clk);

	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;

	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
		pred_s = (rate / (pred_a + 1)) - 1;

		if (((pred_s + 1) * (pred_a + 1)) == rate)
			break;
	}

	/*
	 * Can't find a 1Hz, so give priority to RTC power consumption
	 * by choosing the higher possible value for prediv_a
	 */
	if (pred_s > pred_s_max || pred_a > pred_a_max) {
		pred_a = pred_a_max;
		pred_s = (rate / (pred_a + 1)) - 1;
	}

	stm32_rtc_unlock(dev);

	ret = stm32_rtc_enter_init_mode(dev);
	if (ret) {
		dev_err(dev,
			"Can't enter in init mode. Prescaler config failed.\n");
		goto unlock;
	}

	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
	writel(prer, priv->base + STM32_RTC_PRER);

	/* Force 24h time format */
	cr = readl(priv->base + STM32_RTC_CR);
	cr &= ~STM32_RTC_CR_FMT;
	writel(cr, priv->base + STM32_RTC_CR);

	stm32_rtc_exit_init_mode(dev);

	ret = stm32_rtc_wait_sync(dev);

unlock:
	stm32_rtc_lock(dev);

	if (ret) {
		clk_disable(&clk);
		clk_free(&clk);
	}

	return ret;
}

static int stm32_rtc_probe(struct udevice *dev)
{
	struct stm32_rtc_priv *priv = dev_get_priv(dev);
	struct clk clk;
	int ret;

	priv->base = dev_read_addr(dev);
	if (priv->base == FDT_ADDR_T_NONE)
		return -EINVAL;

	ret = clk_get_by_index(dev, 0, &clk);
	if (ret)
		return ret;

	ret = clk_enable(&clk);
	if (ret) {
		clk_free(&clk);
		return ret;
	}

	ret = stm32_rtc_init(dev);

	if (ret) {
		clk_disable(&clk);
		clk_free(&clk);
	}

	return ret;
}

static const struct rtc_ops stm32_rtc_ops = {
	.get = stm32_rtc_get,
	.set = stm32_rtc_set,
	.reset = stm32_rtc_reset,
};

static const struct udevice_id stm32_rtc_ids[] = {
	{ .compatible = "st,stm32mp1-rtc" },
	{ }
};

U_BOOT_DRIVER(rtc_stm32) = {
	.name	= "rtc-stm32",
	.id	= UCLASS_RTC,
	.probe	= stm32_rtc_probe,
	.of_match = stm32_rtc_ids,
	.ops	= &stm32_rtc_ops,
	.priv_auto_alloc_size = sizeof(struct stm32_rtc_priv),
};