summaryrefslogtreecommitdiff
path: root/drivers/serial/serial_stm32.c
blob: f26234549c3e18ee18b7d532ac707c379dd83067 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
 * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics.
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <serial.h>
#include <watchdog.h>
#include <asm/io.h>
#include <asm/arch/stm32.h>
#include "serial_stm32.h"

static void _stm32_serial_setbrg(fdt_addr_t base,
				 struct stm32_uart_info *uart_info,
				 u32 clock_rate,
				 int baudrate)
{
	bool stm32f4 = uart_info->stm32f4;
	u32 int_div, mantissa, fraction, oversampling;

	int_div = DIV_ROUND_CLOSEST(clock_rate, baudrate);

	if (int_div < 16) {
		oversampling = 8;
		setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
	} else {
		oversampling = 16;
		clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8);
	}

	mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT;
	fraction = int_div % oversampling;

	writel(mantissa | fraction, base + BRR_OFFSET(stm32f4));
}

static int stm32_serial_setbrg(struct udevice *dev, int baudrate)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);

	_stm32_serial_setbrg(plat->base, plat->uart_info,
			     plat->clock_rate, baudrate);

	return 0;
}

static int stm32_serial_setparity(struct udevice *dev, enum serial_par parity)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
	bool stm32f4 = plat->uart_info->stm32f4;
	u8 uart_enable_bit = plat->uart_info->uart_enable_bit;
	u32 cr1 = plat->base + CR1_OFFSET(stm32f4);
	u32 config = 0;

	if (stm32f4)
		return -EINVAL; /* not supported in driver*/

	clrbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));
	/* update usart configuration (uart need to be disable)
	 * PCE: parity check control
	 * PS : '0' : Even / '1' : Odd
	 * M[1:0] = '00' : 8 Data bits
	 * M[1:0] = '01' : 9 Data bits with parity
	 */
	switch (parity) {
	default:
	case SERIAL_PAR_NONE:
		config = 0;
		break;
	case SERIAL_PAR_ODD:
		config = USART_CR1_PCE | USART_CR1_PS | USART_CR1_M0;
		break;
	case SERIAL_PAR_EVEN:
		config = USART_CR1_PCE | USART_CR1_M0;
		break;
	}
	clrsetbits_le32(cr1,
			USART_CR1_PCE | USART_CR1_PS | USART_CR1_M1 |
			USART_CR1_M0,
			config);
	setbits_le32(cr1, USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit));

	return 0;
}

static int stm32_serial_getc(struct udevice *dev)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
	bool stm32f4 = plat->uart_info->stm32f4;
	fdt_addr_t base = plat->base;
	u32 isr = readl(base + ISR_OFFSET(stm32f4));

	if ((isr & USART_ISR_RXNE) == 0)
		return -EAGAIN;

	if (isr & (USART_ISR_PE | USART_ISR_ORE)) {
		if (!stm32f4)
			setbits_le32(base + ICR_OFFSET,
				     USART_ICR_PCECF | USART_ICR_ORECF);
		else
			readl(base + RDR_OFFSET(stm32f4));
		return -EIO;
	}

	return readl(base + RDR_OFFSET(stm32f4));
}

static int _stm32_serial_putc(fdt_addr_t base,
			      struct stm32_uart_info *uart_info,
			      const char c)
{
	bool stm32f4 = uart_info->stm32f4;

	if ((readl(base + ISR_OFFSET(stm32f4)) & USART_ISR_TXE) == 0)
		return -EAGAIN;

	writel(c, base + TDR_OFFSET(stm32f4));

	return 0;
}

static int stm32_serial_putc(struct udevice *dev, const char c)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);

	return _stm32_serial_putc(plat->base, plat->uart_info, c);
}

static int stm32_serial_pending(struct udevice *dev, bool input)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
	bool stm32f4 = plat->uart_info->stm32f4;
	fdt_addr_t base = plat->base;

	if (input)
		return readl(base + ISR_OFFSET(stm32f4)) &
			USART_ISR_RXNE ? 1 : 0;
	else
		return readl(base + ISR_OFFSET(stm32f4)) &
			USART_ISR_TXE ? 0 : 1;
}

static void _stm32_serial_init(fdt_addr_t base,
			       struct stm32_uart_info *uart_info)
{
	bool stm32f4 = uart_info->stm32f4;
	u8 uart_enable_bit = uart_info->uart_enable_bit;

	/* Disable uart-> enable fifo -> enable uart */
	clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
		     BIT(uart_enable_bit));
	if (uart_info->has_fifo)
		setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_FIFOEN);
	setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE |
		     BIT(uart_enable_bit));
}

static int stm32_serial_probe(struct udevice *dev)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
	struct clk clk;
	int ret;

	plat->uart_info = (struct stm32_uart_info *)dev_get_driver_data(dev);

	ret = clk_get_by_index(dev, 0, &clk);
	if (ret < 0)
		return ret;

	ret = clk_enable(&clk);
	if (ret) {
		dev_err(dev, "failed to enable clock\n");
		return ret;
	}

	plat->clock_rate = clk_get_rate(&clk);
	if (plat->clock_rate < 0) {
		clk_disable(&clk);
		return plat->clock_rate;
	};

	_stm32_serial_init(plat->base, plat->uart_info);

	return 0;
}

static const struct udevice_id stm32_serial_id[] = {
	{ .compatible = "st,stm32-uart", .data = (ulong)&stm32f4_info},
	{ .compatible = "st,stm32f7-uart", .data = (ulong)&stm32f7_info},
	{ .compatible = "st,stm32h7-uart", .data = (ulong)&stm32h7_info},
	{}
};

static int stm32_serial_ofdata_to_platdata(struct udevice *dev)
{
	struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);

	plat->base = devfdt_get_addr(dev);
	if (plat->base == FDT_ADDR_T_NONE)
		return -EINVAL;

	return 0;
}

static const struct dm_serial_ops stm32_serial_ops = {
	.putc = stm32_serial_putc,
	.pending = stm32_serial_pending,
	.getc = stm32_serial_getc,
	.setbrg = stm32_serial_setbrg,
	.setparity = stm32_serial_setparity
};

U_BOOT_DRIVER(serial_stm32) = {
	.name = "serial_stm32",
	.id = UCLASS_SERIAL,
	.of_match = of_match_ptr(stm32_serial_id),
	.ofdata_to_platdata = of_match_ptr(stm32_serial_ofdata_to_platdata),
	.platdata_auto_alloc_size = sizeof(struct stm32x7_serial_platdata),
	.ops = &stm32_serial_ops,
	.probe = stm32_serial_probe,
	.flags = DM_FLAG_PRE_RELOC,
};

#ifdef CONFIG_DEBUG_UART_STM32
#include <debug_uart.h>
static inline struct stm32_uart_info *_debug_uart_info(void)
{
	struct stm32_uart_info *uart_info;

#if defined(CONFIG_STM32F4)
	uart_info = &stm32f4_info;
#elif defined(CONFIG_STM32F7)
	uart_info = &stm32f7_info;
#else
	uart_info = &stm32h7_info;
#endif
	return uart_info;
}

static inline void _debug_uart_init(void)
{
	fdt_addr_t base = CONFIG_DEBUG_UART_BASE;
	struct stm32_uart_info *uart_info = _debug_uart_info();

	_stm32_serial_init(base, uart_info);
	_stm32_serial_setbrg(base, uart_info,
			     CONFIG_DEBUG_UART_CLOCK,
			     CONFIG_BAUDRATE);
	printf("DEBUG done\n");
}

static inline void _debug_uart_putc(int c)
{
	fdt_addr_t base = CONFIG_DEBUG_UART_BASE;
	struct stm32_uart_info *uart_info = _debug_uart_info();

	while (_stm32_serial_putc(base, uart_info, c) == -EAGAIN)
		WATCHDOG_RESET();
}

DEBUG_UART_FUNCS
#endif