1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/*
* (C) Copyright 2016
* Vikas Manocha, <vikas.manocha@st.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <asm/io.h>
#include <serial.h>
#include <asm/arch/stm32.h>
#include "serial_stm32x7.h"
DECLARE_GLOBAL_DATA_PTR;
static int stm32_serial_setbrg(struct udevice *dev, int baudrate)
{
struct stm32x7_serial_platdata *plat = dev->platdata;
struct stm32_usart *const usart = plat->base;
u32 int_div, mantissa, fraction, oversampling;
int_div = DIV_ROUND_CLOSEST(plat->clock_rate, baudrate);
if (int_div < 16) {
oversampling = 8;
setbits_le32(&usart->cr1, USART_CR1_OVER8);
} else {
oversampling = 16;
clrbits_le32(&usart->cr1, USART_CR1_OVER8);
}
mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT;
fraction = int_div % oversampling;
writel(mantissa | fraction, &usart->brr);
return 0;
}
static int stm32_serial_getc(struct udevice *dev)
{
struct stm32x7_serial_platdata *plat = dev->platdata;
struct stm32_usart *const usart = plat->base;
if ((readl(&usart->sr) & USART_SR_FLAG_RXNE) == 0)
return -EAGAIN;
return readl(&usart->rd_dr);
}
static int stm32_serial_putc(struct udevice *dev, const char c)
{
struct stm32x7_serial_platdata *plat = dev->platdata;
struct stm32_usart *const usart = plat->base;
if ((readl(&usart->sr) & USART_SR_FLAG_TXE) == 0)
return -EAGAIN;
writel(c, &usart->tx_dr);
return 0;
}
static int stm32_serial_pending(struct udevice *dev, bool input)
{
struct stm32x7_serial_platdata *plat = dev->platdata;
struct stm32_usart *const usart = plat->base;
if (input)
return readl(&usart->sr) & USART_SR_FLAG_RXNE ? 1 : 0;
else
return readl(&usart->sr) & USART_SR_FLAG_TXE ? 0 : 1;
}
static int stm32_serial_probe(struct udevice *dev)
{
struct stm32x7_serial_platdata *plat = dev->platdata;
struct stm32_usart *const usart = plat->base;
#ifdef CONFIG_CLK
int ret;
struct clk clk;
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0)
return ret;
ret = clk_enable(&clk);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
#endif
plat->clock_rate = clk_get_rate(&clk);
if (plat->clock_rate < 0) {
clk_disable(&clk);
return plat->clock_rate;
};
/* Disable usart-> disable overrun-> enable usart */
clrbits_le32(&usart->cr1, USART_CR1_RE | USART_CR1_TE | USART_CR1_UE);
setbits_le32(&usart->cr3, USART_CR3_OVRDIS);
setbits_le32(&usart->cr1, USART_CR1_RE | USART_CR1_TE | USART_CR1_UE);
return 0;
}
#if CONFIG_IS_ENABLED(OF_CONTROL)
static const struct udevice_id stm32_serial_id[] = {
{.compatible = "st,stm32f7-usart"},
{.compatible = "st,stm32f7-uart"},
{}
};
static int stm32_serial_ofdata_to_platdata(struct udevice *dev)
{
struct stm32x7_serial_platdata *plat = dev_get_platdata(dev);
fdt_addr_t addr;
addr = devfdt_get_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->base = (struct stm32_usart *)addr;
return 0;
}
#endif
static const struct dm_serial_ops stm32_serial_ops = {
.putc = stm32_serial_putc,
.pending = stm32_serial_pending,
.getc = stm32_serial_getc,
.setbrg = stm32_serial_setbrg,
};
U_BOOT_DRIVER(serial_stm32) = {
.name = "serial_stm32x7",
.id = UCLASS_SERIAL,
.of_match = of_match_ptr(stm32_serial_id),
.ofdata_to_platdata = of_match_ptr(stm32_serial_ofdata_to_platdata),
.platdata_auto_alloc_size = sizeof(struct stm32x7_serial_platdata),
.ops = &stm32_serial_ops,
.probe = stm32_serial_probe,
.flags = DM_FLAG_PRE_RELOC,
};
|