summaryrefslogtreecommitdiff
path: root/drivers/spi/cadence_qspi_apb.c
blob: 55a7501913a8e4e22bc98001051477f611d161a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*
 * Copyright (C) 2012 Altera Corporation <www.altera.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *  - Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  - Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  - Neither the name of the Altera Corporation nor the
 *    names of its contributors may be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <common.h>
#include <asm/io.h>
#include <linux/errno.h>
#include <wait_bit.h>
#include <spi.h>
#include <malloc.h>
#include "cadence_qspi.h"

#define CQSPI_REG_POLL_US			1 /* 1us */
#define CQSPI_REG_RETRY				10000
#define CQSPI_POLL_IDLE_RETRY			3

/* Transfer mode */
#define CQSPI_INST_TYPE_SINGLE			0
#define CQSPI_INST_TYPE_DUAL			1
#define CQSPI_INST_TYPE_QUAD			2

#define CQSPI_STIG_DATA_LEN_MAX			8

#define CQSPI_DUMMY_CLKS_PER_BYTE		8
#define CQSPI_DUMMY_BYTES_MAX			4

/****************************************************************************
 * Controller's configuration and status register (offset from QSPI_BASE)
 ****************************************************************************/
#define	CQSPI_REG_CONFIG			0x00
#define	CQSPI_REG_CONFIG_ENABLE			BIT(0)
#define	CQSPI_REG_CONFIG_CLK_POL		BIT(1)
#define	CQSPI_REG_CONFIG_CLK_PHA		BIT(2)
#define	CQSPI_REG_CONFIG_DIRECT			BIT(7)
#define	CQSPI_REG_CONFIG_DECODE			BIT(9)
#define	CQSPI_REG_CONFIG_XIP_IMM		BIT(18)
#define	CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
#define	CQSPI_REG_CONFIG_BAUD_LSB		19
#define	CQSPI_REG_CONFIG_IDLE_LSB		31
#define	CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
#define	CQSPI_REG_CONFIG_BAUD_MASK		0xF

#define	CQSPI_REG_RD_INSTR			0x04
#define	CQSPI_REG_RD_INSTR_OPCODE_LSB		0
#define	CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
#define	CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
#define	CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
#define	CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
#define	CQSPI_REG_RD_INSTR_DUMMY_LSB		24
#define	CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
#define	CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
#define	CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
#define	CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F

#define	CQSPI_REG_WR_INSTR			0x08
#define	CQSPI_REG_WR_INSTR_OPCODE_LSB		0
#define	CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16

#define	CQSPI_REG_DELAY				0x0C
#define	CQSPI_REG_DELAY_TSLCH_LSB		0
#define	CQSPI_REG_DELAY_TCHSH_LSB		8
#define	CQSPI_REG_DELAY_TSD2D_LSB		16
#define	CQSPI_REG_DELAY_TSHSL_LSB		24
#define	CQSPI_REG_DELAY_TSLCH_MASK		0xFF
#define	CQSPI_REG_DELAY_TCHSH_MASK		0xFF
#define	CQSPI_REG_DELAY_TSD2D_MASK		0xFF
#define	CQSPI_REG_DELAY_TSHSL_MASK		0xFF

#define	CQSPI_REG_RD_DATA_CAPTURE		0x10
#define	CQSPI_REG_RD_DATA_CAPTURE_BYPASS	BIT(0)
#define	CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB	1
#define	CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK	0xF

#define	CQSPI_REG_SIZE				0x14
#define	CQSPI_REG_SIZE_ADDRESS_LSB		0
#define	CQSPI_REG_SIZE_PAGE_LSB			4
#define	CQSPI_REG_SIZE_BLOCK_LSB		16
#define	CQSPI_REG_SIZE_ADDRESS_MASK		0xF
#define	CQSPI_REG_SIZE_PAGE_MASK		0xFFF
#define	CQSPI_REG_SIZE_BLOCK_MASK		0x3F

#define	CQSPI_REG_SRAMPARTITION			0x18
#define	CQSPI_REG_INDIRECTTRIGGER		0x1C

#define	CQSPI_REG_REMAP				0x24
#define	CQSPI_REG_MODE_BIT			0x28

#define	CQSPI_REG_SDRAMLEVEL			0x2C
#define	CQSPI_REG_SDRAMLEVEL_RD_LSB		0
#define	CQSPI_REG_SDRAMLEVEL_WR_LSB		16
#define	CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
#define	CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF

#define	CQSPI_REG_IRQSTATUS			0x40
#define	CQSPI_REG_IRQMASK			0x44

#define	CQSPI_REG_INDIRECTRD			0x60
#define	CQSPI_REG_INDIRECTRD_START		BIT(0)
#define	CQSPI_REG_INDIRECTRD_CANCEL		BIT(1)
#define	CQSPI_REG_INDIRECTRD_INPROGRESS		BIT(2)
#define	CQSPI_REG_INDIRECTRD_DONE		BIT(5)

#define	CQSPI_REG_INDIRECTRDWATERMARK		0x64
#define	CQSPI_REG_INDIRECTRDSTARTADDR		0x68
#define	CQSPI_REG_INDIRECTRDBYTES		0x6C

#define	CQSPI_REG_CMDCTRL			0x90
#define	CQSPI_REG_CMDCTRL_EXECUTE		BIT(0)
#define	CQSPI_REG_CMDCTRL_INPROGRESS		BIT(1)
#define	CQSPI_REG_CMDCTRL_DUMMY_LSB		7
#define	CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
#define	CQSPI_REG_CMDCTRL_WR_EN_LSB		15
#define	CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
#define	CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
#define	CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
#define	CQSPI_REG_CMDCTRL_RD_EN_LSB		23
#define	CQSPI_REG_CMDCTRL_OPCODE_LSB		24
#define	CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
#define	CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
#define	CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
#define	CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
#define	CQSPI_REG_CMDCTRL_OPCODE_MASK		0xFF

#define	CQSPI_REG_INDIRECTWR			0x70
#define	CQSPI_REG_INDIRECTWR_START		BIT(0)
#define	CQSPI_REG_INDIRECTWR_CANCEL		BIT(1)
#define	CQSPI_REG_INDIRECTWR_INPROGRESS		BIT(2)
#define	CQSPI_REG_INDIRECTWR_DONE		BIT(5)

#define	CQSPI_REG_INDIRECTWRWATERMARK		0x74
#define	CQSPI_REG_INDIRECTWRSTARTADDR		0x78
#define	CQSPI_REG_INDIRECTWRBYTES		0x7C

#define	CQSPI_REG_CMDADDRESS			0x94
#define	CQSPI_REG_CMDREADDATALOWER		0xA0
#define	CQSPI_REG_CMDREADDATAUPPER		0xA4
#define	CQSPI_REG_CMDWRITEDATALOWER		0xA8
#define	CQSPI_REG_CMDWRITEDATAUPPER		0xAC

#define CQSPI_REG_IS_IDLE(base)					\
	((readl(base + CQSPI_REG_CONFIG) >>		\
		CQSPI_REG_CONFIG_IDLE_LSB) & 0x1)

#define CQSPI_GET_RD_SRAM_LEVEL(reg_base)			\
	(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >>	\
	CQSPI_REG_SDRAMLEVEL_RD_LSB) & CQSPI_REG_SDRAMLEVEL_RD_MASK)

#define CQSPI_GET_WR_SRAM_LEVEL(reg_base)			\
	(((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >>	\
	CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK)

static unsigned int cadence_qspi_apb_cmd2addr(const unsigned char *addr_buf,
	unsigned int addr_width)
{
	unsigned int addr;

	addr = (addr_buf[0] << 16) | (addr_buf[1] << 8) | addr_buf[2];

	if (addr_width == 4)
		addr = (addr << 8) | addr_buf[3];

	return addr;
}

void cadence_qspi_apb_controller_enable(void *reg_base)
{
	unsigned int reg;
	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg |= CQSPI_REG_CONFIG_ENABLE;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

void cadence_qspi_apb_controller_disable(void *reg_base)
{
	unsigned int reg;
	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~CQSPI_REG_CONFIG_ENABLE;
	writel(reg, reg_base + CQSPI_REG_CONFIG);
}

/* Return 1 if idle, otherwise return 0 (busy). */
static unsigned int cadence_qspi_wait_idle(void *reg_base)
{
	unsigned int start, count = 0;
	/* timeout in unit of ms */
	unsigned int timeout = 5000;

	start = get_timer(0);
	for ( ; get_timer(start) < timeout ; ) {
		if (CQSPI_REG_IS_IDLE(reg_base))
			count++;
		else
			count = 0;
		/*
		 * Ensure the QSPI controller is in true idle state after
		 * reading back the same idle status consecutively
		 */
		if (count >= CQSPI_POLL_IDLE_RETRY)
			return 1;
	}

	/* Timeout, still in busy mode. */
	printf("QSPI: QSPI is still busy after poll for %d times.\n",
	       CQSPI_REG_RETRY);
	return 0;
}

void cadence_qspi_apb_readdata_capture(void *reg_base,
				unsigned int bypass, unsigned int delay)
{
	unsigned int reg;
	cadence_qspi_apb_controller_disable(reg_base);

	reg = readl(reg_base + CQSPI_REG_RD_DATA_CAPTURE);

	if (bypass)
		reg |= CQSPI_REG_RD_DATA_CAPTURE_BYPASS;
	else
		reg &= ~CQSPI_REG_RD_DATA_CAPTURE_BYPASS;

	reg &= ~(CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK
		<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB);

	reg |= (delay & CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK)
		<< CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB;

	writel(reg, reg_base + CQSPI_REG_RD_DATA_CAPTURE);

	cadence_qspi_apb_controller_enable(reg_base);
}

void cadence_qspi_apb_config_baudrate_div(void *reg_base,
	unsigned int ref_clk_hz, unsigned int sclk_hz)
{
	unsigned int reg;
	unsigned int div;

	cadence_qspi_apb_controller_disable(reg_base);
	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);

	/*
	 * The baud_div field in the config reg is 4 bits, and the ref clock is
	 * divided by 2 * (baud_div + 1). Round up the divider to ensure the
	 * SPI clock rate is less than or equal to the requested clock rate.
	 */
	div = DIV_ROUND_UP(ref_clk_hz, sclk_hz * 2) - 1;

	/* ensure the baud rate doesn't exceed the max value */
	if (div > CQSPI_REG_CONFIG_BAUD_MASK)
		div = CQSPI_REG_CONFIG_BAUD_MASK;

	debug("%s: ref_clk %dHz sclk %dHz Div 0x%x, actual %dHz\n", __func__,
	      ref_clk_hz, sclk_hz, div, ref_clk_hz / (2 * (div + 1)));

	reg |= (div << CQSPI_REG_CONFIG_BAUD_LSB);
	writel(reg, reg_base + CQSPI_REG_CONFIG);

	cadence_qspi_apb_controller_enable(reg_base);
}

void cadence_qspi_apb_set_clk_mode(void *reg_base, uint mode)
{
	unsigned int reg;

	cadence_qspi_apb_controller_disable(reg_base);
	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg &= ~(CQSPI_REG_CONFIG_CLK_POL | CQSPI_REG_CONFIG_CLK_PHA);

	if (mode & SPI_CPOL)
		reg |= CQSPI_REG_CONFIG_CLK_POL;
	if (mode & SPI_CPHA)
		reg |= CQSPI_REG_CONFIG_CLK_PHA;

	writel(reg, reg_base + CQSPI_REG_CONFIG);

	cadence_qspi_apb_controller_enable(reg_base);
}

void cadence_qspi_apb_chipselect(void *reg_base,
	unsigned int chip_select, unsigned int decoder_enable)
{
	unsigned int reg;

	cadence_qspi_apb_controller_disable(reg_base);

	debug("%s : chipselect %d decode %d\n", __func__, chip_select,
	      decoder_enable);

	reg = readl(reg_base + CQSPI_REG_CONFIG);
	/* docoder */
	if (decoder_enable) {
		reg |= CQSPI_REG_CONFIG_DECODE;
	} else {
		reg &= ~CQSPI_REG_CONFIG_DECODE;
		/* Convert CS if without decoder.
		 * CS0 to 4b'1110
		 * CS1 to 4b'1101
		 * CS2 to 4b'1011
		 * CS3 to 4b'0111
		 */
		chip_select = 0xF & ~(1 << chip_select);
	}

	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
			<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
			<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
	writel(reg, reg_base + CQSPI_REG_CONFIG);

	cadence_qspi_apb_controller_enable(reg_base);
}

void cadence_qspi_apb_delay(void *reg_base,
	unsigned int ref_clk, unsigned int sclk_hz,
	unsigned int tshsl_ns, unsigned int tsd2d_ns,
	unsigned int tchsh_ns, unsigned int tslch_ns)
{
	unsigned int ref_clk_ns;
	unsigned int sclk_ns;
	unsigned int tshsl, tchsh, tslch, tsd2d;
	unsigned int reg;

	cadence_qspi_apb_controller_disable(reg_base);

	/* Convert to ns. */
	ref_clk_ns = DIV_ROUND_UP(1000000000, ref_clk);

	/* Convert to ns. */
	sclk_ns = DIV_ROUND_UP(1000000000, sclk_hz);

	/* The controller adds additional delay to that programmed in the reg */
	if (tshsl_ns >= sclk_ns + ref_clk_ns)
		tshsl_ns -= sclk_ns + ref_clk_ns;
	if (tchsh_ns >= sclk_ns + 3 * ref_clk_ns)
		tchsh_ns -= sclk_ns + 3 * ref_clk_ns;
	tshsl = DIV_ROUND_UP(tshsl_ns, ref_clk_ns);
	tchsh = DIV_ROUND_UP(tchsh_ns, ref_clk_ns);
	tslch = DIV_ROUND_UP(tslch_ns, ref_clk_ns);
	tsd2d = DIV_ROUND_UP(tsd2d_ns, ref_clk_ns);

	reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
			<< CQSPI_REG_DELAY_TSHSL_LSB);
	reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
			<< CQSPI_REG_DELAY_TCHSH_LSB);
	reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK)
			<< CQSPI_REG_DELAY_TSLCH_LSB);
	reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
			<< CQSPI_REG_DELAY_TSD2D_LSB);
	writel(reg, reg_base + CQSPI_REG_DELAY);

	cadence_qspi_apb_controller_enable(reg_base);
}

void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat)
{
	unsigned reg;

	cadence_qspi_apb_controller_disable(plat->regbase);

	/* Configure the device size and address bytes */
	reg = readl(plat->regbase + CQSPI_REG_SIZE);
	/* Clear the previous value */
	reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
	reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
	reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB);
	reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB);
	writel(reg, plat->regbase + CQSPI_REG_SIZE);

	/* Configure the remap address register, no remap */
	writel(0, plat->regbase + CQSPI_REG_REMAP);

	/* Indirect mode configurations */
	writel(plat->fifo_depth / 2, plat->regbase + CQSPI_REG_SRAMPARTITION);

	/* Disable all interrupts */
	writel(0, plat->regbase + CQSPI_REG_IRQMASK);

	cadence_qspi_apb_controller_enable(plat->regbase);
}

static int cadence_qspi_apb_exec_flash_cmd(void *reg_base,
	unsigned int reg)
{
	unsigned int retry = CQSPI_REG_RETRY;

	/* Write the CMDCTRL without start execution. */
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
	/* Start execute */
	reg |= CQSPI_REG_CMDCTRL_EXECUTE;
	writel(reg, reg_base + CQSPI_REG_CMDCTRL);

	while (retry--) {
		reg = readl(reg_base + CQSPI_REG_CMDCTRL);
		if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS) == 0)
			break;
		udelay(1);
	}

	if (!retry) {
		printf("QSPI: flash command execution timeout\n");
		return -EIO;
	}

	/* Polling QSPI idle status. */
	if (!cadence_qspi_wait_idle(reg_base))
		return -EIO;

	return 0;
}

/* For command RDID, RDSR. */
int cadence_qspi_apb_command_read(void *reg_base,
	unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen,
	u8 *rxbuf)
{
	unsigned int reg;
	unsigned int read_len;
	int status;

	if (!cmdlen || rxlen > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) {
		printf("QSPI: Invalid input arguments cmdlen %d rxlen %d\n",
		       cmdlen, rxlen);
		return -EINVAL;
	}

	reg = cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;

	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);

	/* 0 means 1 byte. */
	reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
	status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
	if (status != 0)
		return status;

	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);

	/* Put the read value into rx_buf */
	read_len = (rxlen > 4) ? 4 : rxlen;
	memcpy(rxbuf, &reg, read_len);
	rxbuf += read_len;

	if (rxlen > 4) {
		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);

		read_len = rxlen - read_len;
		memcpy(rxbuf, &reg, read_len);
	}
	return 0;
}

/* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */
int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen,
	const u8 *cmdbuf, unsigned int txlen,  const u8 *txbuf)
{
	unsigned int reg = 0;
	unsigned int addr_value;
	unsigned int wr_data;
	unsigned int wr_len;

	if (!cmdlen || cmdlen > 5 || txlen > 8 || cmdbuf == NULL) {
		printf("QSPI: Invalid input arguments cmdlen %d txlen %d\n",
		       cmdlen, txlen);
		return -EINVAL;
	}

	reg |= cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;

	if (cmdlen == 4 || cmdlen == 5) {
		/* Command with address */
		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
		/* Number of bytes to write. */
		reg |= ((cmdlen - 2) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
		/* Get address */
		addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1],
			cmdlen >= 5 ? 4 : 3);

		writel(addr_value, reg_base + CQSPI_REG_CMDADDRESS);
	}

	if (txlen) {
		/* writing data = yes */
		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
		reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;

		wr_len = txlen > 4 ? 4 : txlen;
		memcpy(&wr_data, txbuf, wr_len);
		writel(wr_data, reg_base +
			CQSPI_REG_CMDWRITEDATALOWER);

		if (txlen > 4) {
			txbuf += wr_len;
			wr_len = txlen - wr_len;
			memcpy(&wr_data, txbuf, wr_len);
			writel(wr_data, reg_base +
				CQSPI_REG_CMDWRITEDATAUPPER);
		}
	}

	/* Execute the command */
	return cadence_qspi_apb_exec_flash_cmd(reg_base, reg);
}

/* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */
int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat,
	unsigned int cmdlen, unsigned int rx_width, const u8 *cmdbuf)
{
	unsigned int reg;
	unsigned int rd_reg;
	unsigned int addr_value;
	unsigned int dummy_clk;
	unsigned int dummy_bytes;
	unsigned int addr_bytes;

	/*
	 * Identify addr_byte. All NOR flash device drivers are using fast read
	 * which always expecting 1 dummy byte, 1 cmd byte and 3/4 addr byte.
	 * With that, the length is in value of 5 or 6. Only FRAM chip from
	 * ramtron using normal read (which won't need dummy byte).
	 * Unlikely NOR flash using normal read due to performance issue.
	 */
	if (cmdlen >= 5)
		/* to cater fast read where cmd + addr + dummy */
		addr_bytes = cmdlen - 2;
	else
		/* for normal read (only ramtron as of now) */
		addr_bytes = cmdlen - 1;

	/* Setup the indirect trigger address */
	writel(plat->trigger_address,
	       plat->regbase + CQSPI_REG_INDIRECTTRIGGER);

	/* Configure the opcode */
	rd_reg = cmdbuf[0] << CQSPI_REG_RD_INSTR_OPCODE_LSB;

	if (rx_width & SPI_RX_QUAD)
		/* Instruction and address at DQ0, data at DQ0-3. */
		rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;

	/* Get address */
	addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
	writel(addr_value, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR);

	/* The remaining lenght is dummy bytes. */
	dummy_bytes = cmdlen - addr_bytes - 1;
	if (dummy_bytes) {
		if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX)
			dummy_bytes = CQSPI_DUMMY_BYTES_MAX;

		rd_reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
#if defined(CONFIG_SPL_SPI_XIP) && defined(CONFIG_SPL_BUILD)
		writel(0x0, plat->regbase + CQSPI_REG_MODE_BIT);
#else
		writel(0xFF, plat->regbase + CQSPI_REG_MODE_BIT);
#endif

		/* Convert to clock cycles. */
		dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE;
		/* Need to minus the mode byte (8 clocks). */
		dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE;

		if (dummy_clk)
			rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
				<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
	}

	writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR);

	/* set device size */
	reg = readl(plat->regbase + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (addr_bytes - 1);
	writel(reg, plat->regbase + CQSPI_REG_SIZE);
	return 0;
}

static u32 cadence_qspi_get_rd_sram_level(struct cadence_spi_platdata *plat)
{
	u32 reg = readl(plat->regbase + CQSPI_REG_SDRAMLEVEL);
	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}

static int cadence_qspi_wait_for_data(struct cadence_spi_platdata *plat)
{
	unsigned int timeout = 10000;
	u32 reg;

	while (timeout--) {
		reg = cadence_qspi_get_rd_sram_level(plat);
		if (reg)
			return reg;
		udelay(1);
	}

	return -ETIMEDOUT;
}

int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat,
	unsigned int n_rx, u8 *rxbuf)
{
	unsigned int remaining = n_rx;
	unsigned int bytes_to_read = 0;
	int ret;

	writel(n_rx, plat->regbase + CQSPI_REG_INDIRECTRDBYTES);

	/* Start the indirect read transfer */
	writel(CQSPI_REG_INDIRECTRD_START,
	       plat->regbase + CQSPI_REG_INDIRECTRD);

	while (remaining > 0) {
		ret = cadence_qspi_wait_for_data(plat);
		if (ret < 0) {
			printf("Indirect write timed out (%i)\n", ret);
			goto failrd;
		}

		bytes_to_read = ret;

		while (bytes_to_read != 0) {
			bytes_to_read *= plat->fifo_width;
			bytes_to_read = bytes_to_read > remaining ?
					remaining : bytes_to_read;
			/*
			 * Handle non-4-byte aligned access to avoid
			 * data abort.
			 */
			if (((uintptr_t)rxbuf % 4) || (bytes_to_read % 4))
				readsb(plat->ahbbase, rxbuf, bytes_to_read);
			else
				readsl(plat->ahbbase, rxbuf,
				       bytes_to_read >> 2);
			rxbuf += bytes_to_read;
			remaining -= bytes_to_read;
			bytes_to_read = cadence_qspi_get_rd_sram_level(plat);
		}
	}

	/* Check indirect done status */
	ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTRD,
				CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0);
	if (ret) {
		printf("Indirect read completion error (%i)\n", ret);
		goto failrd;
	}

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTRD_DONE,
	       plat->regbase + CQSPI_REG_INDIRECTRD);

	return 0;

failrd:
	/* Cancel the indirect read */
	writel(CQSPI_REG_INDIRECTRD_CANCEL,
	       plat->regbase + CQSPI_REG_INDIRECTRD);
	return ret;
}

/* Opcode + Address (3/4 bytes) */
int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat,
	unsigned int cmdlen, unsigned int tx_width, const u8 *cmdbuf)
{
	unsigned int reg;
	unsigned int addr_bytes = cmdlen > 4 ? 4 : 3;

	if (cmdlen < 4 || cmdbuf == NULL) {
		printf("QSPI: Invalid input argument, len %d cmdbuf %p\n",
		       cmdlen, cmdbuf);
		return -EINVAL;
	}
	/* Setup the indirect trigger address */
	writel(plat->trigger_address,
	       plat->regbase + CQSPI_REG_INDIRECTTRIGGER);

	/* Configure the opcode */
	reg = cmdbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB;

	if (tx_width & SPI_TX_QUAD)
		reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;

	writel(reg, plat->regbase + CQSPI_REG_WR_INSTR);

	/* Setup write address. */
	reg = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes);
	writel(reg, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR);

	reg = readl(plat->regbase + CQSPI_REG_SIZE);
	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
	reg |= (addr_bytes - 1);
	writel(reg, plat->regbase + CQSPI_REG_SIZE);
	return 0;
}

int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat,
	unsigned int n_tx, const u8 *txbuf)
{
	unsigned int page_size = plat->page_size;
	unsigned int remaining = n_tx;
	const u8 *bb_txbuf = txbuf;
	void *bounce_buf = NULL;
	unsigned int write_bytes;
	int ret;

	/*
	 * Use bounce buffer for non 32 bit aligned txbuf to avoid data
	 * aborts
	 */
	if ((uintptr_t)txbuf % 4) {
		bounce_buf = malloc(n_tx);
		if (!bounce_buf)
			return -ENOMEM;
		memcpy(bounce_buf, txbuf, n_tx);
		bb_txbuf = bounce_buf;
	}

	/* Configure the indirect read transfer bytes */
	writel(n_tx, plat->regbase + CQSPI_REG_INDIRECTWRBYTES);

	/* Start the indirect write transfer */
	writel(CQSPI_REG_INDIRECTWR_START,
	       plat->regbase + CQSPI_REG_INDIRECTWR);

	while (remaining > 0) {
		write_bytes = remaining > page_size ? page_size : remaining;
		writesl(plat->ahbbase, bb_txbuf, write_bytes >> 2);
		if (write_bytes % 4)
			writesb(plat->ahbbase,
				bb_txbuf + rounddown(write_bytes, 4),
				write_bytes % 4);

		ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_SDRAMLEVEL,
					CQSPI_REG_SDRAMLEVEL_WR_MASK <<
					CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0);
		if (ret) {
			printf("Indirect write timed out (%i)\n", ret);
			goto failwr;
		}

		bb_txbuf += write_bytes;
		remaining -= write_bytes;
	}

	/* Check indirect done status */
	ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTWR,
				CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0);
	if (ret) {
		printf("Indirect write completion error (%i)\n", ret);
		goto failwr;
	}

	/* Clear indirect completion status */
	writel(CQSPI_REG_INDIRECTWR_DONE,
	       plat->regbase + CQSPI_REG_INDIRECTWR);
	if (bounce_buf)
		free(bounce_buf);
	return 0;

failwr:
	/* Cancel the indirect write */
	writel(CQSPI_REG_INDIRECTWR_CANCEL,
	       plat->regbase + CQSPI_REG_INDIRECTWR);
	if (bounce_buf)
		free(bounce_buf);
	return ret;
}

void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy)
{
	unsigned int reg;

	/* enter XiP mode immediately and enable direct mode */
	reg = readl(reg_base + CQSPI_REG_CONFIG);
	reg |= CQSPI_REG_CONFIG_ENABLE;
	reg |= CQSPI_REG_CONFIG_DIRECT;
	reg |= CQSPI_REG_CONFIG_XIP_IMM;
	writel(reg, reg_base + CQSPI_REG_CONFIG);

	/* keep the XiP mode */
	writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT);

	/* Enable mode bit at devrd */
	reg = readl(reg_base + CQSPI_REG_RD_INSTR);
	reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
}