1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Stefan Roese <sr@denx.de>
*
* Derived from the Linux driver version drivers/spi/spi-mt7621.c
* Copyright (C) 2011 Sergiy <piratfm@gmail.com>
* Copyright (C) 2011-2013 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2014-2015 Felix Fietkau <nbd@nbd.name>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <spi.h>
#include <wait_bit.h>
#include <linux/io.h>
#define SPI_MSG_SIZE_MAX 32 /* SPI message chunk size */
/* Enough for SPI NAND page read / write with page size 2048 bytes */
#define SPI_MSG_SIZE_OVERALL (2048 + 16)
#define MT7621_SPI_TRANS 0x00
#define MT7621_SPI_TRANS_START BIT(8)
#define MT7621_SPI_TRANS_BUSY BIT(16)
#define MT7621_SPI_OPCODE 0x04
#define MT7621_SPI_DATA0 0x08
#define MT7621_SPI_DATA4 0x18
#define MT7621_SPI_MASTER 0x28
#define MT7621_SPI_MOREBUF 0x2c
#define MT7621_SPI_POLAR 0x38
#define MT7621_LSB_FIRST BIT(3)
#define MT7621_CPOL BIT(4)
#define MT7621_CPHA BIT(5)
#define MASTER_MORE_BUFMODE BIT(2)
#define MASTER_RS_CLK_SEL GENMASK(27, 16)
#define MASTER_RS_CLK_SEL_SHIFT 16
#define MASTER_RS_SLAVE_SEL GENMASK(31, 29)
struct mt7621_spi {
void __iomem *base;
unsigned int sys_freq;
u32 data[(SPI_MSG_SIZE_OVERALL / 4) + 1];
int tx_len;
};
static void mt7621_spi_reset(struct mt7621_spi *rs, int duplex)
{
setbits_le32(rs->base + MT7621_SPI_MASTER,
MASTER_RS_SLAVE_SEL | MASTER_MORE_BUFMODE);
}
static void mt7621_spi_set_cs(struct mt7621_spi *rs, int cs, int enable)
{
u32 val = 0;
debug("%s: cs#%d -> %s\n", __func__, cs, enable ? "enable" : "disable");
if (enable)
val = BIT(cs);
iowrite32(val, rs->base + MT7621_SPI_POLAR);
}
static int mt7621_spi_set_mode(struct udevice *bus, uint mode)
{
struct mt7621_spi *rs = dev_get_priv(bus);
u32 reg;
debug("%s: mode=0x%08x\n", __func__, mode);
reg = ioread32(rs->base + MT7621_SPI_MASTER);
reg &= ~MT7621_LSB_FIRST;
if (mode & SPI_LSB_FIRST)
reg |= MT7621_LSB_FIRST;
reg &= ~(MT7621_CPHA | MT7621_CPOL);
switch (mode & (SPI_CPOL | SPI_CPHA)) {
case SPI_MODE_0:
break;
case SPI_MODE_1:
reg |= MT7621_CPHA;
break;
case SPI_MODE_2:
reg |= MT7621_CPOL;
break;
case SPI_MODE_3:
reg |= MT7621_CPOL | MT7621_CPHA;
break;
}
iowrite32(reg, rs->base + MT7621_SPI_MASTER);
return 0;
}
static int mt7621_spi_set_speed(struct udevice *bus, uint speed)
{
struct mt7621_spi *rs = dev_get_priv(bus);
u32 rate;
u32 reg;
debug("%s: speed=%d\n", __func__, speed);
rate = DIV_ROUND_UP(rs->sys_freq, speed);
debug("rate:%u\n", rate);
if (rate > 4097)
return -EINVAL;
if (rate < 2)
rate = 2;
reg = ioread32(rs->base + MT7621_SPI_MASTER);
reg &= ~MASTER_RS_CLK_SEL;
reg |= (rate - 2) << MASTER_RS_CLK_SEL_SHIFT;
iowrite32(reg, rs->base + MT7621_SPI_MASTER);
return 0;
}
static inline int mt7621_spi_wait_till_ready(struct mt7621_spi *rs)
{
int ret;
ret = wait_for_bit_le32(rs->base + MT7621_SPI_TRANS,
MT7621_SPI_TRANS_BUSY, 0, 10, 0);
if (ret)
pr_err("Timeout in %s!\n", __func__);
return ret;
}
static int mt7621_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct mt7621_spi *rs = dev_get_priv(bus);
const u8 *tx_buf = dout;
u8 *ptr = (u8 *)dout;
u8 *rx_buf = din;
int total_size = bitlen >> 3;
int chunk_size;
int rx_len = 0;
u32 data[(SPI_MSG_SIZE_MAX / 4) + 1] = { 0 };
u32 val;
int i;
debug("%s: dout=%p, din=%p, len=%x, flags=%lx\n", __func__, dout, din,
total_size, flags);
/*
* This driver only supports half-duplex, so complain and bail out
* upon full-duplex messages
*/
if (dout && din) {
printf("Only half-duplex SPI transfer supported\n");
return -EIO;
}
if (dout) {
debug("TX-DATA: ");
for (i = 0; i < total_size; i++)
debug("%02x ", *ptr++);
debug("\n");
}
mt7621_spi_wait_till_ready(rs);
/*
* Set CS active upon start of SPI message. This message can
* be split upon multiple calls to this xfer function
*/
if (flags & SPI_XFER_BEGIN)
mt7621_spi_set_cs(rs, spi_chip_select(dev), 1);
while (total_size > 0) {
/* Don't exceed the max xfer size */
chunk_size = min_t(int, total_size, SPI_MSG_SIZE_MAX);
/*
* We might have some TX data buffered from the last xfer
* message. Make sure, that this does not exceed the max
* xfer size
*/
if (rs->tx_len > 4)
chunk_size -= rs->tx_len;
if (din)
rx_len = chunk_size;
if (tx_buf) {
/* Check if this message does not exceed the buffer */
if ((chunk_size + rs->tx_len) > SPI_MSG_SIZE_OVERALL) {
printf("TX message size too big (%d)\n",
chunk_size + rs->tx_len);
return -EMSGSIZE;
}
/*
* Write all TX data into internal buffer to collect
* all TX messages into one buffer (might be split into
* multiple calls to this function)
*/
for (i = 0; i < chunk_size; i++, rs->tx_len++) {
rs->data[rs->tx_len / 4] |=
tx_buf[i] << (8 * (rs->tx_len & 3));
}
}
if (flags & SPI_XFER_END) {
/* Write TX data into controller */
if (rs->tx_len) {
rs->data[0] = swab32(rs->data[0]);
if (rs->tx_len < 4)
rs->data[0] >>= (4 - rs->tx_len) * 8;
for (i = 0; i < rs->tx_len; i += 4) {
iowrite32(rs->data[i / 4], rs->base +
MT7621_SPI_OPCODE + i);
}
}
/* Write length into controller */
val = (min_t(int, rs->tx_len, 4) * 8) << 24;
if (rs->tx_len > 4)
val |= (rs->tx_len - 4) * 8;
val |= (rx_len * 8) << 12;
iowrite32(val, rs->base + MT7621_SPI_MOREBUF);
/* Start the xfer */
setbits_le32(rs->base + MT7621_SPI_TRANS,
MT7621_SPI_TRANS_START);
/* Wait until xfer is finished on bus */
mt7621_spi_wait_till_ready(rs);
/* Reset TX length and TX buffer for next xfer */
rs->tx_len = 0;
memset(rs->data, 0, sizeof(rs->data));
}
for (i = 0; i < rx_len; i += 4)
data[i / 4] = ioread32(rs->base + MT7621_SPI_DATA0 + i);
if (rx_len) {
debug("RX-DATA: ");
for (i = 0; i < rx_len; i++) {
rx_buf[i] = data[i / 4] >> (8 * (i & 3));
debug("%02x ", rx_buf[i]);
}
debug("\n");
}
if (tx_buf)
tx_buf += chunk_size;
if (rx_buf)
rx_buf += chunk_size;
total_size -= chunk_size;
}
/* Wait until xfer is finished on bus and de-assert CS */
mt7621_spi_wait_till_ready(rs);
if (flags & SPI_XFER_END)
mt7621_spi_set_cs(rs, spi_chip_select(dev), 0);
return 0;
}
static int mt7621_spi_probe(struct udevice *dev)
{
struct mt7621_spi *rs = dev_get_priv(dev);
struct clk clk;
int ret;
rs->base = dev_remap_addr(dev);
if (!rs->base)
return -EINVAL;
ret = clk_get_by_index(dev, 0, &clk);
if (ret < 0) {
printf("Please provide a clock!\n");
return ret;
}
clk_enable(&clk);
rs->sys_freq = clk_get_rate(&clk);
if (!rs->sys_freq) {
printf("Please provide a valid clock!\n");
return -EINVAL;
}
mt7621_spi_reset(rs, 0);
return 0;
}
static const struct dm_spi_ops mt7621_spi_ops = {
.set_mode = mt7621_spi_set_mode,
.set_speed = mt7621_spi_set_speed,
.xfer = mt7621_spi_xfer,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id mt7621_spi_ids[] = {
{ .compatible = "ralink,mt7621-spi" },
{ }
};
U_BOOT_DRIVER(mt7621_spi) = {
.name = "mt7621_spi",
.id = UCLASS_SPI,
.of_match = mt7621_spi_ids,
.ops = &mt7621_spi_ops,
.priv_auto_alloc_size = sizeof(struct mt7621_spi),
.probe = mt7621_spi_probe,
};
|