1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
|
// SPDX-License-Identifier: GPL-2.0+
/*
* uniphier_spi.c - Socionext UniPhier SPI driver
* Copyright 2019 Socionext, Inc.
*/
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <time.h>
#include <linux/bitfield.h>
#include <linux/io.h>
#include <spi.h>
#include <wait_bit.h>
DECLARE_GLOBAL_DATA_PTR;
#define SSI_CTL 0x00
#define SSI_CTL_EN BIT(0)
#define SSI_CKS 0x04
#define SSI_CKS_CKRAT_MASK GENMASK(7, 0)
#define SSI_CKS_CKPHS BIT(14)
#define SSI_CKS_CKINIT BIT(13)
#define SSI_CKS_CKDLY BIT(12)
#define SSI_TXWDS 0x08
#define SSI_TXWDS_WDLEN_MASK GENMASK(13, 8)
#define SSI_TXWDS_TDTF_MASK GENMASK(7, 6)
#define SSI_TXWDS_DTLEN_MASK GENMASK(5, 0)
#define SSI_RXWDS 0x0c
#define SSI_RXWDS_RDTF_MASK GENMASK(7, 6)
#define SSI_RXWDS_DTLEN_MASK GENMASK(5, 0)
#define SSI_FPS 0x10
#define SSI_FPS_FSPOL BIT(15)
#define SSI_FPS_FSTRT BIT(14)
#define SSI_SR 0x14
#define SSI_SR_BUSY BIT(7)
#define SSI_SR_TNF BIT(5)
#define SSI_SR_RNE BIT(0)
#define SSI_IE 0x18
#define SSI_IC 0x1c
#define SSI_IC_TCIC BIT(4)
#define SSI_IC_RCIC BIT(3)
#define SSI_IC_RORIC BIT(0)
#define SSI_FC 0x20
#define SSI_FC_TXFFL BIT(12)
#define SSI_FC_TXFTH_MASK GENMASK(11, 8)
#define SSI_FC_RXFFL BIT(4)
#define SSI_FC_RXFTH_MASK GENMASK(3, 0)
#define SSI_XDR 0x24 /* TXDR for write, RXDR for read */
#define SSI_FIFO_DEPTH 8U
#define SSI_REG_TIMEOUT (CONFIG_SYS_HZ / 100) /* 10 ms */
#define SSI_XFER_TIMEOUT (CONFIG_SYS_HZ) /* 1 sec */
#define SSI_CLK 50000000 /* internal I/O clock: 50MHz */
struct uniphier_spi_platdata {
void __iomem *base;
u32 frequency; /* input frequency */
u32 speed_hz;
uint deactivate_delay_us; /* Delay to wait after deactivate */
uint activate_delay_us; /* Delay to wait after activate */
};
struct uniphier_spi_priv {
void __iomem *base;
u8 mode;
u8 fifo_depth;
u8 bits_per_word;
ulong last_transaction_us; /* Time of last transaction end */
};
static void uniphier_spi_enable(struct uniphier_spi_priv *priv, int enable)
{
u32 val;
val = readl(priv->base + SSI_CTL);
if (enable)
val |= SSI_CTL_EN;
else
val &= ~SSI_CTL_EN;
writel(val, priv->base + SSI_CTL);
}
static void uniphier_spi_regdump(struct uniphier_spi_priv *priv)
{
pr_debug("CTL %08x\n", readl(priv->base + SSI_CTL));
pr_debug("CKS %08x\n", readl(priv->base + SSI_CKS));
pr_debug("TXWDS %08x\n", readl(priv->base + SSI_TXWDS));
pr_debug("RXWDS %08x\n", readl(priv->base + SSI_RXWDS));
pr_debug("FPS %08x\n", readl(priv->base + SSI_FPS));
pr_debug("SR %08x\n", readl(priv->base + SSI_SR));
pr_debug("IE %08x\n", readl(priv->base + SSI_IE));
pr_debug("IC %08x\n", readl(priv->base + SSI_IC));
pr_debug("FC %08x\n", readl(priv->base + SSI_FC));
pr_debug("XDR %08x\n", readl(priv->base + SSI_XDR));
}
static void spi_cs_activate(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_platdata *plat = bus->platdata;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
ulong delay_us; /* The delay completed so far */
u32 val;
/* If it's too soon to do another transaction, wait */
if (plat->deactivate_delay_us && priv->last_transaction_us) {
delay_us = timer_get_us() - priv->last_transaction_us;
if (delay_us < plat->deactivate_delay_us)
udelay(plat->deactivate_delay_us - delay_us);
}
val = readl(priv->base + SSI_FPS);
if (priv->mode & SPI_CS_HIGH)
val |= SSI_FPS_FSPOL;
else
val &= ~SSI_FPS_FSPOL;
writel(val, priv->base + SSI_FPS);
if (plat->activate_delay_us)
udelay(plat->activate_delay_us);
}
static void spi_cs_deactivate(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_platdata *plat = bus->platdata;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val;
val = readl(priv->base + SSI_FPS);
if (priv->mode & SPI_CS_HIGH)
val &= ~SSI_FPS_FSPOL;
else
val |= SSI_FPS_FSPOL;
writel(val, priv->base + SSI_FPS);
/* Remember time of this transaction so we can honour the bus delay */
if (plat->deactivate_delay_us)
priv->last_transaction_us = timer_get_us();
}
static int uniphier_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val, size;
uniphier_spi_enable(priv, false);
/* disable interrupts */
writel(0, priv->base + SSI_IE);
/* bits_per_word */
size = priv->bits_per_word;
val = readl(priv->base + SSI_TXWDS);
val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
writel(val, priv->base + SSI_TXWDS);
val = readl(priv->base + SSI_RXWDS);
val &= ~SSI_RXWDS_DTLEN_MASK;
val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
writel(val, priv->base + SSI_RXWDS);
/* reset FIFOs */
val = SSI_FC_TXFFL | SSI_FC_RXFFL;
writel(val, priv->base + SSI_FC);
/* FIFO threthold */
val = readl(priv->base + SSI_FC);
val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
val |= FIELD_PREP(SSI_FC_TXFTH_MASK, priv->fifo_depth);
val |= FIELD_PREP(SSI_FC_RXFTH_MASK, priv->fifo_depth);
writel(val, priv->base + SSI_FC);
/* clear interrupts */
writel(SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC,
priv->base + SSI_IC);
uniphier_spi_enable(priv, true);
return 0;
}
static int uniphier_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
uniphier_spi_enable(priv, false);
return 0;
}
static int uniphier_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
const u8 *tx_buf = dout;
u8 *rx_buf = din, buf;
u32 len = bitlen / 8;
u32 tx_len, rx_len;
u32 ts, status;
int ret = 0;
if (bitlen % 8) {
dev_err(dev, "Non byte aligned SPI transfer\n");
return -EINVAL;
}
if (flags & SPI_XFER_BEGIN)
spi_cs_activate(dev);
uniphier_spi_enable(priv, true);
ts = get_timer(0);
tx_len = len;
rx_len = len;
uniphier_spi_regdump(priv);
while (tx_len || rx_len) {
ret = wait_for_bit_le32(priv->base + SSI_SR, SSI_SR_BUSY, false,
SSI_REG_TIMEOUT * 1000, false);
if (ret) {
if (ret == -ETIMEDOUT)
dev_err(dev, "access timeout\n");
break;
}
status = readl(priv->base + SSI_SR);
/* write the data into TX */
if (tx_len && (status & SSI_SR_TNF)) {
buf = tx_buf ? *tx_buf++ : 0;
writel(buf, priv->base + SSI_XDR);
tx_len--;
}
/* read the data from RX */
if (rx_len && (status & SSI_SR_RNE)) {
buf = readl(priv->base + SSI_XDR);
if (rx_buf)
*rx_buf++ = buf;
rx_len--;
}
if (get_timer(ts) >= SSI_XFER_TIMEOUT) {
dev_err(dev, "transfer timeout\n");
ret = -ETIMEDOUT;
break;
}
}
if (flags & SPI_XFER_END)
spi_cs_deactivate(dev);
uniphier_spi_enable(priv, false);
return ret;
}
static int uniphier_spi_set_speed(struct udevice *bus, uint speed)
{
struct uniphier_spi_platdata *plat = bus->platdata;
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val, ckdiv;
if (speed > plat->frequency)
speed = plat->frequency;
/* baudrate */
ckdiv = DIV_ROUND_UP(SSI_CLK, speed);
ckdiv = round_up(ckdiv, 2);
val = readl(priv->base + SSI_CKS);
val &= ~SSI_CKS_CKRAT_MASK;
val |= ckdiv & SSI_CKS_CKRAT_MASK;
writel(val, priv->base + SSI_CKS);
return 0;
}
static int uniphier_spi_set_mode(struct udevice *bus, uint mode)
{
struct uniphier_spi_priv *priv = dev_get_priv(bus);
u32 val1, val2;
/*
* clock setting
* CKPHS capture timing. 0:rising edge, 1:falling edge
* CKINIT clock initial level. 0:low, 1:high
* CKDLY clock delay. 0:no delay, 1:delay depending on FSTRT
* (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
*
* frame setting
* FSPOL frame signal porarity. 0: low, 1: high
* FSTRT start frame timing
* 0: rising edge of clock, 1: falling edge of clock
*/
val1 = readl(priv->base + SSI_CKS);
val2 = readl(priv->base + SSI_FPS);
switch (mode & (SPI_CPOL | SPI_CPHA)) {
case SPI_MODE_0:
/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
val1 |= SSI_CKS_CKPHS | SSI_CKS_CKDLY;
val1 &= ~SSI_CKS_CKINIT;
val2 &= ~SSI_FPS_FSTRT;
break;
case SPI_MODE_1:
/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
val1 &= ~(SSI_CKS_CKPHS | SSI_CKS_CKINIT | SSI_CKS_CKDLY);
val2 |= SSI_FPS_FSTRT;
break;
case SPI_MODE_2:
/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
val1 |= SSI_CKS_CKINIT | SSI_CKS_CKDLY;
val1 &= ~SSI_CKS_CKPHS;
val2 |= SSI_FPS_FSTRT;
break;
case SPI_MODE_3:
/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
val1 |= SSI_CKS_CKPHS | SSI_CKS_CKINIT;
val1 &= ~SSI_CKS_CKDLY;
val2 &= ~SSI_FPS_FSTRT;
break;
}
writel(val1, priv->base + SSI_CKS);
writel(val2, priv->base + SSI_FPS);
/* format */
val1 = readl(priv->base + SSI_TXWDS);
val2 = readl(priv->base + SSI_RXWDS);
if (mode & SPI_LSB_FIRST) {
val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
val2 |= FIELD_PREP(SSI_RXWDS_RDTF_MASK, 1);
}
writel(val1, priv->base + SSI_TXWDS);
writel(val2, priv->base + SSI_RXWDS);
priv->mode = mode;
return 0;
}
static int uniphier_spi_ofdata_to_platdata(struct udevice *bus)
{
struct uniphier_spi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
plat->base = devfdt_get_addr_ptr(bus);
plat->frequency =
fdtdec_get_int(blob, node, "spi-max-frequency", 12500000);
plat->deactivate_delay_us =
fdtdec_get_int(blob, node, "spi-deactivate-delay", 0);
plat->activate_delay_us =
fdtdec_get_int(blob, node, "spi-activate-delay", 0);
plat->speed_hz = plat->frequency / 2;
return 0;
}
static int uniphier_spi_probe(struct udevice *bus)
{
struct uniphier_spi_platdata *plat = dev_get_platdata(bus);
struct uniphier_spi_priv *priv = dev_get_priv(bus);
priv->base = plat->base;
priv->fifo_depth = SSI_FIFO_DEPTH;
priv->bits_per_word = 8;
return 0;
}
static const struct dm_spi_ops uniphier_spi_ops = {
.claim_bus = uniphier_spi_claim_bus,
.release_bus = uniphier_spi_release_bus,
.xfer = uniphier_spi_xfer,
.set_speed = uniphier_spi_set_speed,
.set_mode = uniphier_spi_set_mode,
};
static const struct udevice_id uniphier_spi_ids[] = {
{ .compatible = "socionext,uniphier-scssi" },
{ /* Sentinel */ }
};
U_BOOT_DRIVER(uniphier_spi) = {
.name = "uniphier_spi",
.id = UCLASS_SPI,
.of_match = uniphier_spi_ids,
.ops = &uniphier_spi_ops,
.ofdata_to_platdata = uniphier_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct uniphier_spi_platdata),
.priv_auto_alloc_size = sizeof(struct uniphier_spi_priv),
.probe = uniphier_spi_probe,
};
|