summaryrefslogtreecommitdiff
path: root/drivers/usb/host/xhci-mem.c
blob: 2d968aafb03eddb1948ec3308d87df146a98fdf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
// SPDX-License-Identifier: GPL-2.0+
/*
 * USB HOST XHCI Controller stack
 *
 * Based on xHCI host controller driver in linux-kernel
 * by Sarah Sharp.
 *
 * Copyright (C) 2008 Intel Corp.
 * Author: Sarah Sharp
 *
 * Copyright (C) 2013 Samsung Electronics Co.Ltd
 * Authors: Vivek Gautam <gautam.vivek@samsung.com>
 *	    Vikas Sajjan <vikas.sajjan@samsung.com>
 */

#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <log.h>
#include <asm/byteorder.h>
#include <usb.h>
#include <malloc.h>
#include <asm/cache.h>
#include <linux/bug.h>
#include <linux/errno.h>

#include <usb/xhci.h>

#define CACHELINE_SIZE		CONFIG_SYS_CACHELINE_SIZE
/**
 * flushes the address passed till the length
 *
 * @param addr	pointer to memory region to be flushed
 * @param len	the length of the cache line to be flushed
 * @return none
 */
void xhci_flush_cache(uintptr_t addr, u32 len)
{
	BUG_ON((void *)addr == NULL || len == 0);

	flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
				ALIGN(addr + len, CACHELINE_SIZE));
}

/**
 * invalidates the address passed till the length
 *
 * @param addr	pointer to memory region to be invalidates
 * @param len	the length of the cache line to be invalidated
 * @return none
 */
void xhci_inval_cache(uintptr_t addr, u32 len)
{
	BUG_ON((void *)addr == NULL || len == 0);

	invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
				ALIGN(addr + len, CACHELINE_SIZE));
}


/**
 * frees the "segment" pointer passed
 *
 * @param ptr	pointer to "segement" to be freed
 * @return none
 */
static void xhci_segment_free(struct xhci_segment *seg)
{
	free(seg->trbs);
	seg->trbs = NULL;

	free(seg);
}

/**
 * frees the "ring" pointer passed
 *
 * @param ptr	pointer to "ring" to be freed
 * @return none
 */
static void xhci_ring_free(struct xhci_ring *ring)
{
	struct xhci_segment *seg;
	struct xhci_segment *first_seg;

	BUG_ON(!ring);

	first_seg = ring->first_seg;
	seg = first_seg->next;
	while (seg != first_seg) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(seg);
		seg = next;
	}
	xhci_segment_free(first_seg);

	free(ring);
}

/**
 * Free the scratchpad buffer array and scratchpad buffers
 *
 * @ctrl	host controller data structure
 * @return	none
 */
static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
{
	if (!ctrl->scratchpad)
		return;

	ctrl->dcbaa->dev_context_ptrs[0] = 0;

	free((void *)(uintptr_t)ctrl->scratchpad->sp_array[0]);
	free(ctrl->scratchpad->sp_array);
	free(ctrl->scratchpad);
	ctrl->scratchpad = NULL;
}

/**
 * frees the "xhci_container_ctx" pointer passed
 *
 * @param ptr	pointer to "xhci_container_ctx" to be freed
 * @return none
 */
static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
{
	free(ctx->bytes);
	free(ctx);
}

/**
 * frees the virtual devices for "xhci_ctrl" pointer passed
 *
 * @param ptr	pointer to "xhci_ctrl" whose virtual devices are to be freed
 * @return none
 */
static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
{
	int i;
	int slot_id;
	struct xhci_virt_device *virt_dev;

	/*
	 * refactored here to loop through all virt_dev
	 * Slot ID 0 is reserved
	 */
	for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
		virt_dev = ctrl->devs[slot_id];
		if (!virt_dev)
			continue;

		ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;

		for (i = 0; i < 31; ++i)
			if (virt_dev->eps[i].ring)
				xhci_ring_free(virt_dev->eps[i].ring);

		if (virt_dev->in_ctx)
			xhci_free_container_ctx(virt_dev->in_ctx);
		if (virt_dev->out_ctx)
			xhci_free_container_ctx(virt_dev->out_ctx);

		free(virt_dev);
		/* make sure we are pointing to NULL */
		ctrl->devs[slot_id] = NULL;
	}
}

/**
 * frees all the memory allocated
 *
 * @param ptr	pointer to "xhci_ctrl" to be cleaned up
 * @return none
 */
void xhci_cleanup(struct xhci_ctrl *ctrl)
{
	xhci_ring_free(ctrl->event_ring);
	xhci_ring_free(ctrl->cmd_ring);
	xhci_scratchpad_free(ctrl);
	xhci_free_virt_devices(ctrl);
	free(ctrl->erst.entries);
	free(ctrl->dcbaa);
	memset(ctrl, '\0', sizeof(struct xhci_ctrl));
}

/**
 * Malloc the aligned memory
 *
 * @param size	size of memory to be allocated
 * @return allocates the memory and returns the aligned pointer
 */
static void *xhci_malloc(unsigned int size)
{
	void *ptr;
	size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);

	ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
	BUG_ON(!ptr);
	memset(ptr, '\0', size);

	xhci_flush_cache((uintptr_t)ptr, size);

	return ptr;
}

/**
 * Make the prev segment point to the next segment.
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 *
 * @param prev	pointer to the previous segment
 * @param next	pointer to the next segment
 * @param link_trbs	flag to indicate whether to link the trbs or NOT
 * @return none
 */
static void xhci_link_segments(struct xhci_segment *prev,
				struct xhci_segment *next, bool link_trbs)
{
	u32 val;
	u64 val_64 = 0;

	if (!prev || !next)
		return;
	prev->next = next;
	if (link_trbs) {
		val_64 = (uintptr_t)next->trbs;
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;

		/*
		 * Set the last TRB in the segment to
		 * have a TRB type ID of Link TRB
		 */
		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
		val &= ~TRB_TYPE_BITMASK;
		val |= (TRB_LINK << TRB_TYPE_SHIFT);

		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
	}
}

/**
 * Initialises the Ring's enqueue,dequeue,enq_seg pointers
 *
 * @param ring	pointer to the RING to be intialised
 * @return none
 */
static void xhci_initialize_ring_info(struct xhci_ring *ring)
{
	/*
	 * The ring is empty, so the enqueue pointer == dequeue pointer
	 */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;

	/*
	 * The ring is initialized to 0. The producer must write 1 to the
	 * cycle bit to handover ownership of the TRB, so PCS = 1.
	 * The consumer must compare CCS to the cycle bit to
	 * check ownership, so CCS = 1.
	 */
	ring->cycle_state = 1;
}

/**
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 *
 * @param	none
 * @return pointer to the newly allocated SEGMENT
 */
static struct xhci_segment *xhci_segment_alloc(void)
{
	struct xhci_segment *seg;

	seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
	BUG_ON(!seg);

	seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);

	seg->next = NULL;

	return seg;
}

/**
 * Create a new ring with zero or more segments.
 * TODO: current code only uses one-time-allocated single-segment rings
 * of 1KB anyway, so we might as well get rid of all the segment and
 * linking code (and maybe increase the size a bit, e.g. 4KB).
 *
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
 *
 * @param num_segs	number of segments in the ring
 * @param link_trbs	flag to indicate whether to link the trbs or NOT
 * @return pointer to the newly created RING
 */
struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
{
	struct xhci_ring *ring;
	struct xhci_segment *prev;

	ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
	BUG_ON(!ring);

	if (num_segs == 0)
		return ring;

	ring->first_seg = xhci_segment_alloc();
	BUG_ON(!ring->first_seg);

	num_segs--;

	prev = ring->first_seg;
	while (num_segs > 0) {
		struct xhci_segment *next;

		next = xhci_segment_alloc();
		BUG_ON(!next);

		xhci_link_segments(prev, next, link_trbs);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(prev, ring->first_seg, link_trbs);
	if (link_trbs) {
		/* See section 4.9.2.1 and 6.4.4.1 */
		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
					cpu_to_le32(LINK_TOGGLE);
	}
	xhci_initialize_ring_info(ring);

	return ring;
}

/**
 * Set up the scratchpad buffer array and scratchpad buffers
 *
 * @ctrl	host controller data structure
 * @return	-ENOMEM if buffer allocation fails, 0 on success
 */
static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
{
	struct xhci_hccr *hccr = ctrl->hccr;
	struct xhci_hcor *hcor = ctrl->hcor;
	struct xhci_scratchpad *scratchpad;
	int num_sp;
	uint32_t page_size;
	void *buf;
	int i;

	num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
	if (!num_sp)
		return 0;

	scratchpad = malloc(sizeof(*scratchpad));
	if (!scratchpad)
		goto fail_sp;
	ctrl->scratchpad = scratchpad;

	scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
	if (!scratchpad->sp_array)
		goto fail_sp2;
	ctrl->dcbaa->dev_context_ptrs[0] =
		cpu_to_le64((uintptr_t)scratchpad->sp_array);

	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[0],
		sizeof(ctrl->dcbaa->dev_context_ptrs[0]));

	page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	BUG_ON(i == 16);

	page_size = 1 << (i + 12);
	buf = memalign(page_size, num_sp * page_size);
	if (!buf)
		goto fail_sp3;
	memset(buf, '\0', num_sp * page_size);
	xhci_flush_cache((uintptr_t)buf, num_sp * page_size);

	for (i = 0; i < num_sp; i++) {
		uintptr_t ptr = (uintptr_t)buf + i * page_size;
		scratchpad->sp_array[i] = cpu_to_le64(ptr);
	}

	return 0;

fail_sp3:
	free(scratchpad->sp_array);

fail_sp2:
	free(scratchpad);
	ctrl->scratchpad = NULL;

fail_sp:
	return -ENOMEM;
}

/**
 * Allocates the Container context
 *
 * @param ctrl	Host controller data structure
 * @param type type of XHCI Container Context
 * @return NULL if failed else pointer to the context on success
 */
static struct xhci_container_ctx
		*xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
{
	struct xhci_container_ctx *ctx;

	ctx = (struct xhci_container_ctx *)
		malloc(sizeof(struct xhci_container_ctx));
	BUG_ON(!ctx);

	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
	ctx->type = type;
	ctx->size = (MAX_EP_CTX_NUM + 1) *
			CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));

	ctx->bytes = (u8 *)xhci_malloc(ctx->size);

	return ctx;
}

/**
 * Allocating virtual device
 *
 * @param udev	pointer to USB deivce structure
 * @return 0 on success else -1 on failure
 */
int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
{
	u64 byte_64 = 0;
	struct xhci_virt_device *virt_dev;

	/* Slot ID 0 is reserved */
	if (ctrl->devs[slot_id]) {
		printf("Virt dev for slot[%d] already allocated\n", slot_id);
		return -EEXIST;
	}

	ctrl->devs[slot_id] = (struct xhci_virt_device *)
					malloc(sizeof(struct xhci_virt_device));

	if (!ctrl->devs[slot_id]) {
		puts("Failed to allocate virtual device\n");
		return -ENOMEM;
	}

	memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
	virt_dev = ctrl->devs[slot_id];

	/* Allocate the (output) device context that will be used in the HC. */
	virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
					XHCI_CTX_TYPE_DEVICE);
	if (!virt_dev->out_ctx) {
		puts("Failed to allocate out context for virt dev\n");
		return -ENOMEM;
	}

	/* Allocate the (input) device context for address device command */
	virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
					XHCI_CTX_TYPE_INPUT);
	if (!virt_dev->in_ctx) {
		puts("Failed to allocate in context for virt dev\n");
		return -ENOMEM;
	}

	/* Allocate endpoint 0 ring */
	virt_dev->eps[0].ring = xhci_ring_alloc(1, true);

	byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);

	/* Point to output device context in dcbaa. */
	ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;

	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
			 sizeof(__le64));
	return 0;
}

/**
 * Allocates the necessary data structures
 * for XHCI host controller
 *
 * @param ctrl	Host controller data structure
 * @param hccr	pointer to HOST Controller Control Registers
 * @param hcor	pointer to HOST Controller Operational Registers
 * @return 0 if successful else -1 on failure
 */
int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
					struct xhci_hcor *hcor)
{
	uint64_t val_64;
	uint64_t trb_64;
	uint32_t val;
	unsigned long deq;
	int i;
	struct xhci_segment *seg;

	/* DCBAA initialization */
	ctrl->dcbaa = (struct xhci_device_context_array *)
			xhci_malloc(sizeof(struct xhci_device_context_array));
	if (ctrl->dcbaa == NULL) {
		puts("unable to allocate DCBA\n");
		return -ENOMEM;
	}

	val_64 = (uintptr_t)ctrl->dcbaa;
	/* Set the pointer in DCBAA register */
	xhci_writeq(&hcor->or_dcbaap, val_64);

	/* Command ring control pointer register initialization */
	ctrl->cmd_ring = xhci_ring_alloc(1, true);

	/* Set the address in the Command Ring Control register */
	trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
	val_64 = xhci_readq(&hcor->or_crcr);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
		ctrl->cmd_ring->cycle_state;
	xhci_writeq(&hcor->or_crcr, val_64);

	/* write the address of db register */
	val = xhci_readl(&hccr->cr_dboff);
	val &= DBOFF_MASK;
	ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);

	/* write the address of runtime register */
	val = xhci_readl(&hccr->cr_rtsoff);
	val &= RTSOFF_MASK;
	ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);

	/* writting the address of ir_set structure */
	ctrl->ir_set = &ctrl->run_regs->ir_set[0];

	/* Event ring does not maintain link TRB */
	ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
	ctrl->erst.entries = (struct xhci_erst_entry *)
		xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);

	ctrl->erst.num_entries = ERST_NUM_SEGS;

	for (val = 0, seg = ctrl->event_ring->first_seg;
			val < ERST_NUM_SEGS;
			val++) {
		trb_64 = 0;
		trb_64 = (uintptr_t)seg->trbs;
		struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
		xhci_writeq(&entry->seg_addr, trb_64);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
		entry->rsvd = 0;
		seg = seg->next;
	}
	xhci_flush_cache((uintptr_t)ctrl->erst.entries,
			 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));

	deq = (unsigned long)ctrl->event_ring->dequeue;

	/* Update HC event ring dequeue pointer */
	xhci_writeq(&ctrl->ir_set->erst_dequeue,
				(u64)deq & (u64)~ERST_PTR_MASK);

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(&ctrl->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_writel(&ctrl->ir_set->erst_size, val);

	/* this is the event ring segment table pointer */
	val_64 = xhci_readq(&ctrl->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);

	xhci_writeq(&ctrl->ir_set->erst_base, val_64);

	/* set up the scratchpad buffer array and scratchpad buffers */
	xhci_scratchpad_alloc(ctrl);

	/* initializing the virtual devices to NULL */
	for (i = 0; i < MAX_HC_SLOTS; ++i)
		ctrl->devs[i] = NULL;

	/*
	 * Just Zero'ing this register completely,
	 * or some spurious Device Notification Events
	 * might screw things here.
	 */
	xhci_writel(&hcor->or_dnctrl, 0x0);

	return 0;
}

/**
 * Give the input control context for the passed container context
 *
 * @param ctx	pointer to the context
 * @return pointer to the Input control context data
 */
struct xhci_input_control_ctx
		*xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
{
	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

/**
 * Give the slot context for the passed container context
 *
 * @param ctrl	Host controller data structure
 * @param ctx	pointer to the context
 * @return pointer to the slot control context data
 */
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
				struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
}

/**
 * Gets the EP context from based on the ep_index
 *
 * @param ctrl	Host controller data structure
 * @param ctx	context container
 * @param ep_index	index of the endpoint
 * @return pointer to the End point context
 */
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes +
		(ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
}

/**
 * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint
 * and then issue a configure endpoint command.
 *
 * @param ctrl	Host controller data structure
 * @param in_ctx contains the input context
 * @param out_ctx contains the input context
 * @param ep_index index of the end point
 * @return none
 */
void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
			struct xhci_container_ctx *in_ctx,
			struct xhci_container_ctx *out_ctx,
			unsigned int ep_index)
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

	out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/**
 * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint
 * and then issue a configure endpoint command.
 * Only the context entries field matters, but
 * we'll copy the whole thing anyway.
 *
 * @param ctrl	Host controller data structure
 * @param in_ctx contains the inpout context
 * @param out_ctx contains the inpout context
 * @return none
 */
void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
					struct xhci_container_ctx *out_ctx)
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

	in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

/**
 * Setup an xHCI virtual device for a Set Address command
 *
 * @param udev pointer to the Device Data Structure
 * @return returns negative value on failure else 0 on success
 */
void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl,
				     struct usb_device *udev, int hop_portnr)
{
	struct xhci_virt_device *virt_dev;
	struct xhci_ep_ctx *ep0_ctx;
	struct xhci_slot_ctx *slot_ctx;
	u32 port_num = 0;
	u64 trb_64 = 0;
	int slot_id = udev->slot_id;
	int speed = udev->speed;
	int route = 0;
#if CONFIG_IS_ENABLED(DM_USB)
	struct usb_device *dev = udev;
	struct usb_hub_device *hub;
#endif

	virt_dev = ctrl->devs[slot_id];

	BUG_ON(!virt_dev);

	/* Extract the EP0 and Slot Ctrl */
	ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);

	/* Only the control endpoint is valid - one endpoint context */
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));

#if CONFIG_IS_ENABLED(DM_USB)
	/* Calculate the route string for this device */
	port_num = dev->portnr;
	while (!usb_hub_is_root_hub(dev->dev)) {
		hub = dev_get_uclass_priv(dev->dev);
		/*
		 * Each hub in the topology is expected to have no more than
		 * 15 ports in order for the route string of a device to be
		 * unique. SuperSpeed hubs are restricted to only having 15
		 * ports, but FS/LS/HS hubs are not. The xHCI specification
		 * says that if the port number the device is greater than 15,
		 * that portion of the route string shall be set to 15.
		 */
		if (port_num > 15)
			port_num = 15;
		route |= port_num << (hub->hub_depth * 4);
		dev = dev_get_parent_priv(dev->dev);
		port_num = dev->portnr;
		dev = dev_get_parent_priv(dev->dev->parent);
	}

	debug("route string %x\n", route);
#endif
	slot_ctx->dev_info |= route;

	switch (speed) {
	case USB_SPEED_SUPER:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
		break;
	case USB_SPEED_HIGH:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
		break;
	case USB_SPEED_FULL:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
		break;
	case USB_SPEED_LOW:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
		BUG();
	}

#if CONFIG_IS_ENABLED(DM_USB)
	/* Set up TT fields to support FS/LS devices */
	if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
		struct udevice *parent = udev->dev;

		dev = udev;
		do {
			port_num = dev->portnr;
			dev = dev_get_parent_priv(parent);
			if (usb_hub_is_root_hub(dev->dev))
				break;
			parent = dev->dev->parent;
		} while (dev->speed != USB_SPEED_HIGH);

		if (!usb_hub_is_root_hub(dev->dev)) {
			hub = dev_get_uclass_priv(dev->dev);
			if (hub->tt.multi)
				slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
			slot_ctx->tt_info |= cpu_to_le32(TT_PORT(port_num));
			slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id));
		}
	}
#endif

	port_num = hop_portnr;
	debug("port_num = %d\n", port_num);

	slot_ctx->dev_info2 |=
			cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
				ROOT_HUB_PORT_SHIFT));

	/* Step 4 - ring already allocated */
	/* Step 5 */
	ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
	debug("SPEED = %d\n", speed);

	switch (speed) {
	case USB_SPEED_SUPER:
		ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
					MAX_PACKET_SHIFT));
		debug("Setting Packet size = 512bytes\n");
		break;
	case USB_SPEED_HIGH:
	/* USB core guesses at a 64-byte max packet first for FS devices */
	case USB_SPEED_FULL:
		ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
					MAX_PACKET_SHIFT));
		debug("Setting Packet size = 64bytes\n");
		break;
	case USB_SPEED_LOW:
		ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
					MAX_PACKET_SHIFT));
		debug("Setting Packet size = 8bytes\n");
		break;
	default:
		/* New speed? */
		BUG();
	}

	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
	ep0_ctx->ep_info2 |=
			cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
			((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));

	trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
	ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);

	/*
	 * xHCI spec 6.2.3:
	 * software shall set 'Average TRB Length' to 8 for control endpoints.
	 */
	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
	xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
}