1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
/*
* EFI application memory management
*
* Copyright (c) 2016 Alexander Graf
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <efi_loader.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <libfdt_env.h>
#include <linux/list_sort.h>
#include <inttypes.h>
#include <watchdog.h>
DECLARE_GLOBAL_DATA_PTR;
struct efi_mem_list {
struct list_head link;
struct efi_mem_desc desc;
};
#define EFI_CARVE_NO_OVERLAP -1
#define EFI_CARVE_LOOP_AGAIN -2
#define EFI_CARVE_OVERLAPS_NONRAM -3
/* This list contains all memory map items */
LIST_HEAD(efi_mem);
#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
void *efi_bounce_buffer;
#endif
/*
* U-Boot services each EFI AllocatePool request as a separate
* (multiple) page allocation. We have to track the number of pages
* to be able to free the correct amount later.
* EFI requires 8 byte alignment for pool allocations, so we can
* prepend each allocation with an 64 bit header tracking the
* allocation size, and hand out the remainder to the caller.
*/
struct efi_pool_allocation {
u64 num_pages;
char data[];
};
/*
* Sorts the memory list from highest address to lowest address
*
* When allocating memory we should always start from the highest
* address chunk, so sort the memory list such that the first list
* iterator gets the highest address and goes lower from there.
*/
static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
if (mema->desc.physical_start == memb->desc.physical_start)
return 0;
else if (mema->desc.physical_start < memb->desc.physical_start)
return 1;
else
return -1;
}
static void efi_mem_sort(void)
{
list_sort(NULL, &efi_mem, efi_mem_cmp);
}
/*
* Unmaps all memory occupied by the carve_desc region from the
* list entry pointed to by map.
*
* Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
* Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
* and the map contains anything but free ram.
* (only when overlap_only_ram is true)
* Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
* again, as it has been altered
* Returns the number of overlapping pages. The pages are removed from
* the mapping list.
*
* In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
* to readd the already carved out pages to the mapping.
*/
static int efi_mem_carve_out(struct efi_mem_list *map,
struct efi_mem_desc *carve_desc,
bool overlap_only_ram)
{
struct efi_mem_list *newmap;
struct efi_mem_desc *map_desc = &map->desc;
uint64_t map_start = map_desc->physical_start;
uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
uint64_t carve_start = carve_desc->physical_start;
uint64_t carve_end = carve_start +
(carve_desc->num_pages << EFI_PAGE_SHIFT);
/* check whether we're overlapping */
if ((carve_end <= map_start) || (carve_start >= map_end))
return EFI_CARVE_NO_OVERLAP;
/* We're overlapping with non-RAM, warn the caller if desired */
if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
return EFI_CARVE_OVERLAPS_NONRAM;
/* Sanitize carve_start and carve_end to lie within our bounds */
carve_start = max(carve_start, map_start);
carve_end = min(carve_end, map_end);
/* Carving at the beginning of our map? Just move it! */
if (carve_start == map_start) {
if (map_end == carve_end) {
/* Full overlap, just remove map */
list_del(&map->link);
free(map);
} else {
map->desc.physical_start = carve_end;
map->desc.num_pages = (map_end - carve_end)
>> EFI_PAGE_SHIFT;
}
return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
}
/*
* Overlapping maps, just split the list map at carve_start,
* it will get moved or removed in the next iteration.
*
* [ map_desc |__carve_start__| newmap ]
*/
/* Create a new map from [ carve_start ... map_end ] */
newmap = calloc(1, sizeof(*newmap));
newmap->desc = map->desc;
newmap->desc.physical_start = carve_start;
newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
/* Insert before current entry (descending address order) */
list_add_tail(&newmap->link, &map->link);
/* Shrink the map to [ map_start ... carve_start ] */
map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
return EFI_CARVE_LOOP_AGAIN;
}
uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
bool overlap_only_ram)
{
struct list_head *lhandle;
struct efi_mem_list *newlist;
bool carve_again;
uint64_t carved_pages = 0;
debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
start, pages, memory_type, overlap_only_ram ? "yes" : "no");
if (!pages)
return start;
newlist = calloc(1, sizeof(*newlist));
newlist->desc.type = memory_type;
newlist->desc.physical_start = start;
newlist->desc.virtual_start = start;
newlist->desc.num_pages = pages;
switch (memory_type) {
case EFI_RUNTIME_SERVICES_CODE:
case EFI_RUNTIME_SERVICES_DATA:
newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
(1ULL << EFI_MEMORY_RUNTIME_SHIFT);
break;
case EFI_MMAP_IO:
newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
break;
default:
newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
break;
}
/* Add our new map */
do {
carve_again = false;
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem;
int r;
lmem = list_entry(lhandle, struct efi_mem_list, link);
r = efi_mem_carve_out(lmem, &newlist->desc,
overlap_only_ram);
switch (r) {
case EFI_CARVE_OVERLAPS_NONRAM:
/*
* The user requested to only have RAM overlaps,
* but we hit a non-RAM region. Error out.
*/
return 0;
case EFI_CARVE_NO_OVERLAP:
/* Just ignore this list entry */
break;
case EFI_CARVE_LOOP_AGAIN:
/*
* We split an entry, but need to loop through
* the list again to actually carve it.
*/
carve_again = true;
break;
default:
/* We carved a number of pages */
carved_pages += r;
carve_again = true;
break;
}
if (carve_again) {
/* The list changed, we need to start over */
break;
}
}
} while (carve_again);
if (overlap_only_ram && (carved_pages != pages)) {
/*
* The payload wanted to have RAM overlaps, but we overlapped
* with an unallocated region. Error out.
*/
return 0;
}
/* Add our new map */
list_add_tail(&newlist->link, &efi_mem);
/* And make sure memory is listed in descending order */
efi_mem_sort();
return start;
}
static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
{
struct list_head *lhandle;
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem = list_entry(lhandle,
struct efi_mem_list, link);
struct efi_mem_desc *desc = &lmem->desc;
uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
uint64_t desc_end = desc->physical_start + desc_len;
uint64_t curmax = min(max_addr, desc_end);
uint64_t ret = curmax - len;
/* We only take memory from free RAM */
if (desc->type != EFI_CONVENTIONAL_MEMORY)
continue;
/* Out of bounds for max_addr */
if ((ret + len) > max_addr)
continue;
/* Out of bounds for upper map limit */
if ((ret + len) > desc_end)
continue;
/* Out of bounds for lower map limit */
if (ret < desc->physical_start)
continue;
/* Return the highest address in this map within bounds */
return ret;
}
return 0;
}
efi_status_t efi_allocate_pages(int type, int memory_type,
unsigned long pages, uint64_t *memory)
{
u64 len = pages << EFI_PAGE_SHIFT;
efi_status_t r = EFI_SUCCESS;
uint64_t addr;
switch (type) {
case 0:
/* Any page */
addr = efi_find_free_memory(len, gd->start_addr_sp);
if (!addr) {
r = EFI_NOT_FOUND;
break;
}
break;
case 1:
/* Max address */
addr = efi_find_free_memory(len, *memory);
if (!addr) {
r = EFI_NOT_FOUND;
break;
}
break;
case 2:
/* Exact address, reserve it. The addr is already in *memory. */
addr = *memory;
break;
default:
/* UEFI doesn't specify other allocation types */
r = EFI_INVALID_PARAMETER;
break;
}
if (r == EFI_SUCCESS) {
uint64_t ret;
/* Reserve that map in our memory maps */
ret = efi_add_memory_map(addr, pages, memory_type, true);
if (ret == addr) {
*memory = addr;
} else {
/* Map would overlap, bail out */
r = EFI_OUT_OF_RESOURCES;
}
}
return r;
}
void *efi_alloc(uint64_t len, int memory_type)
{
uint64_t ret = 0;
uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
efi_status_t r;
r = efi_allocate_pages(0, memory_type, pages, &ret);
if (r == EFI_SUCCESS)
return (void*)(uintptr_t)ret;
return NULL;
}
efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
{
uint64_t r = 0;
r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
/* Merging of adjacent free regions is missing */
if (r == memory)
return EFI_SUCCESS;
return EFI_NOT_FOUND;
}
efi_status_t efi_allocate_pool(int pool_type, unsigned long size,
void **buffer)
{
efi_status_t r;
efi_physical_addr_t t;
u64 num_pages = (size + sizeof(u64) + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
if (size == 0) {
*buffer = NULL;
return EFI_SUCCESS;
}
r = efi_allocate_pages(0, pool_type, num_pages, &t);
if (r == EFI_SUCCESS) {
struct efi_pool_allocation *alloc = (void *)(uintptr_t)t;
alloc->num_pages = num_pages;
*buffer = alloc->data;
}
return r;
}
efi_status_t efi_free_pool(void *buffer)
{
efi_status_t r;
struct efi_pool_allocation *alloc;
if (buffer == NULL)
return EFI_INVALID_PARAMETER;
alloc = container_of(buffer, struct efi_pool_allocation, data);
/* Sanity check, was the supplied address returned by allocate_pool */
assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
return r;
}
efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
struct efi_mem_desc *memory_map,
unsigned long *map_key,
unsigned long *descriptor_size,
uint32_t *descriptor_version)
{
ulong map_size = 0;
int map_entries = 0;
struct list_head *lhandle;
unsigned long provided_map_size = *memory_map_size;
list_for_each(lhandle, &efi_mem)
map_entries++;
map_size = map_entries * sizeof(struct efi_mem_desc);
*memory_map_size = map_size;
if (descriptor_size)
*descriptor_size = sizeof(struct efi_mem_desc);
if (descriptor_version)
*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
if (provided_map_size < map_size)
return EFI_BUFFER_TOO_SMALL;
/* Copy list into array */
if (memory_map) {
/* Return the list in ascending order */
memory_map = &memory_map[map_entries - 1];
list_for_each(lhandle, &efi_mem) {
struct efi_mem_list *lmem;
lmem = list_entry(lhandle, struct efi_mem_list, link);
*memory_map = lmem->desc;
memory_map--;
}
}
return EFI_SUCCESS;
}
__weak void efi_add_known_memory(void)
{
int i;
/* Add RAM */
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
u64 ram_start = gd->bd->bi_dram[i].start;
u64 ram_size = gd->bd->bi_dram[i].size;
u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
false);
}
}
int efi_memory_init(void)
{
unsigned long runtime_start, runtime_end, runtime_pages;
unsigned long uboot_start, uboot_pages;
unsigned long uboot_stack_size = 16 * 1024 * 1024;
efi_add_known_memory();
/* Add U-Boot */
uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
/* Add Runtime Services */
runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
runtime_end = (ulong)&__efi_runtime_stop;
runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
efi_add_memory_map(runtime_start, runtime_pages,
EFI_RUNTIME_SERVICES_CODE, false);
#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
/* Request a 32bit 64MB bounce buffer region */
uint64_t efi_bounce_buffer_addr = 0xffffffff;
if (efi_allocate_pages(1, EFI_LOADER_DATA,
(64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
&efi_bounce_buffer_addr) != EFI_SUCCESS)
return -1;
efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
#endif
return 0;
}
|