1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
|
# SPDX-License-Identifier: GPL-2.0+
# Copyright (c) 2016 Google, Inc
Introduction
------------
Firmware often consists of several components which must be packaged together.
For example, we may have SPL, U-Boot, a device tree and an environment area
grouped together and placed in MMC flash. When the system starts, it must be
able to find these pieces.
So far U-Boot has not provided a way to handle creating such images in a
general way. Each SoC does what it needs to build an image, often packing or
concatenating images in the U-Boot build system.
Binman aims to provide a mechanism for building images, from simple
SPL + U-Boot combinations, to more complex arrangements with many parts.
What it does
------------
Binman reads your board's device tree and finds a node which describes the
required image layout. It uses this to work out what to place where. The
output file normally contains the device tree, so it is in principle possible
to read an image and extract its constituent parts.
Features
--------
So far binman is pretty simple. It supports binary blobs, such as 'u-boot',
'spl' and 'fdt'. It supports empty entries (such as setting to 0xff). It can
place entries at a fixed location in the image, or fit them together with
suitable padding and alignment. It provides a way to process binaries before
they are included, by adding a Python plug-in. The device tree is available
to U-Boot at run-time so that the images can be interpreted.
Binman does not yet update the device tree with the final location of
everything when it is done. A simple C structure could be generated for
constrained environments like SPL (using dtoc) but this is also not
implemented.
Binman can also support incorporating filesystems in the image if required.
For example x86 platforms may use CBFS in some cases.
Binman is intended for use with U-Boot but is designed to be general enough
to be useful in other image-packaging situations.
Motivation
----------
Packaging of firmware is quite a different task from building the various
parts. In many cases the various binaries which go into the image come from
separate build systems. For example, ARM Trusted Firmware is used on ARMv8
devices but is not built in the U-Boot tree. If a Linux kernel is included
in the firmware image, it is built elsewhere.
It is of course possible to add more and more build rules to the U-Boot
build system to cover these cases. It can shell out to other Makefiles and
build scripts. But it seems better to create a clear divide between building
software and packaging it.
At present this is handled by manual instructions, different for each board,
on how to create images that will boot. By turning these instructions into a
standard format, we can support making valid images for any board without
manual effort, lots of READMEs, etc.
Benefits:
- Each binary can have its own build system and tool chain without creating
any dependencies between them
- Avoids the need for a single-shot build: individual parts can be updated
and brought in as needed
- Provides for a standard image description available in the build and at
run-time
- SoC-specific image-signing tools can be accomodated
- Avoids cluttering the U-Boot build system with image-building code
- The image description is automatically available at run-time in U-Boot,
SPL. It can be made available to other software also
- The image description is easily readable (it's a text file in device-tree
format) and permits flexible packing of binaries
Terminology
-----------
Binman uses the following terms:
- image - an output file containing a firmware image
- binary - an input binary that goes into the image
Relationship to FIT
-------------------
FIT is U-Boot's official image format. It supports multiple binaries with
load / execution addresses, compression. It also supports verification
through hashing and RSA signatures.
FIT was originally designed to support booting a Linux kernel (with an
optional ramdisk) and device tree chosen from various options in the FIT.
Now that U-Boot supports configuration via device tree, it is possible to
load U-Boot from a FIT, with the device tree chosen by SPL.
Binman considers FIT to be one of the binaries it can place in the image.
Where possible it is best to put as much as possible in the FIT, with binman
used to deal with cases not covered by FIT. Examples include initial
execution (since FIT itself does not have an executable header) and dealing
with device boundaries, such as the read-only/read-write separation in SPI
flash.
For U-Boot, binman should not be used to create ad-hoc images in place of
FIT.
Relationship to mkimage
-----------------------
The mkimage tool provides a means to create a FIT. Traditionally it has
needed an image description file: a device tree, like binman, but in a
different format. More recently it has started to support a '-f auto' mode
which can generate that automatically.
More relevant to binman, mkimage also permits creation of many SoC-specific
image types. These can be listed by running 'mkimage -T list'. Examples
include 'rksd', the Rockchip SD/MMC boot format. The mkimage tool is often
called from the U-Boot build system for this reason.
Binman considers the output files created by mkimage to be binary blobs
which it can place in an image. Binman does not replace the mkimage tool or
this purpose. It would be possible in some situtions to create a new entry
type for the images in mkimage, but this would not add functionality. It
seems better to use the mkiamge tool to generate binaries and avoid blurring
the boundaries between building input files (mkimage) and packaging then
into a final image (binman).
Example use of binman in U-Boot
-------------------------------
Binman aims to replace some of the ad-hoc image creation in the U-Boot
build system.
Consider sunxi. It has the following steps:
1. It uses a custom mksunxiboot tool to build an SPL image called
sunxi-spl.bin. This should probably move into mkimage.
2. It uses mkimage to package U-Boot into a legacy image file (so that it can
hold the load and execution address) called u-boot.img.
3. It builds a final output image called u-boot-sunxi-with-spl.bin which
consists of sunxi-spl.bin, some padding and u-boot.img.
Binman is intended to replace the last step. The U-Boot build system builds
u-boot.bin and sunxi-spl.bin. Binman can then take over creation of
sunxi-spl.bin (by calling mksunxiboot, or hopefully one day mkimage). In any
case, it would then create the image from the component parts.
This simplifies the U-Boot Makefile somewhat, since various pieces of logic
can be replaced by a call to binman.
Example use of binman for x86
-----------------------------
In most cases x86 images have a lot of binary blobs, 'black-box' code
provided by Intel which must be run for the platform to work. Typically
these blobs are not relocatable and must be placed at fixed areas in the
firmare image.
Currently this is handled by ifdtool, which places microcode, FSP, MRC, VGA
BIOS, reference code and Intel ME binaries into a u-boot.rom file.
Binman is intended to replace all of this, with ifdtool left to handle only
the configuration of the Intel-format descriptor.
Running binman
--------------
Type:
binman -b <board_name>
to build an image for a board. The board name is the same name used when
configuring U-Boot (e.g. for sandbox_defconfig the board name is 'sandbox').
Binman assumes that the input files for the build are in ../b/<board_name>.
Or you can specify this explicitly:
binman -I <build_path>
where <build_path> is the build directory containing the output of the U-Boot
build.
(Future work will make this more configurable)
In either case, binman picks up the device tree file (u-boot.dtb) and looks
for its instructions in the 'binman' node.
Binman has a few other options which you can see by running 'binman -h'.
Enabling binman for a board
---------------------------
At present binman is invoked from a rule in the main Makefile. Typically you
will have a rule like:
ifneq ($(CONFIG_ARCH_<something>),)
u-boot-<your_suffix>.bin: <input_file_1> <input_file_2> checkbinman FORCE
$(call if_changed,binman)
endif
This assumes that u-boot-<your_suffix>.bin is a target, and is the final file
that you need to produce. You can make it a target by adding it to ALL-y
either in the main Makefile or in a config.mk file in your arch subdirectory.
Once binman is executed it will pick up its instructions from a device-tree
file, typically <soc>-u-boot.dtsi, where <soc> is your CONFIG_SYS_SOC value.
You can use other, more specific CONFIG options - see 'Automatic .dtsi
inclusion' below.
Image description format
------------------------
The binman node is called 'binman'. An example image description is shown
below:
binman {
filename = "u-boot-sunxi-with-spl.bin";
pad-byte = <0xff>;
blob {
filename = "spl/sunxi-spl.bin";
};
u-boot {
offset = <CONFIG_SPL_PAD_TO>;
};
};
This requests binman to create an image file called u-boot-sunxi-with-spl.bin
consisting of a specially formatted SPL (spl/sunxi-spl.bin, built by the
normal U-Boot Makefile), some 0xff padding, and a U-Boot legacy image. The
padding comes from the fact that the second binary is placed at
CONFIG_SPL_PAD_TO. If that line were omitted then the U-Boot binary would
immediately follow the SPL binary.
The binman node describes an image. The sub-nodes describe entries in the
image. Each entry represents a region within the overall image. The name of
the entry (blob, u-boot) tells binman what to put there. For 'blob' we must
provide a filename. For 'u-boot', binman knows that this means 'u-boot.bin'.
Entries are normally placed into the image sequentially, one after the other.
The image size is the total size of all entries. As you can see, you can
specify the start offset of an entry using the 'offset' property.
Note that due to a device tree requirement, all entries must have a unique
name. If you want to put the same binary in the image multiple times, you can
use any unique name, with the 'type' property providing the type.
The attributes supported for entries are described below.
offset:
This sets the offset of an entry within the image or section containing
it. The first byte of the image is normally at offset 0. If 'offset' is
not provided, binman sets it to the end of the previous region, or the
start of the image's entry area (normally 0) if there is no previous
region.
align:
This sets the alignment of the entry. The entry offset is adjusted
so that the entry starts on an aligned boundary within the image. For
example 'align = <16>' means that the entry will start on a 16-byte
boundary. Alignment shold be a power of 2. If 'align' is not
provided, no alignment is performed.
size:
This sets the size of the entry. The contents will be padded out to
this size. If this is not provided, it will be set to the size of the
contents.
pad-before:
Padding before the contents of the entry. Normally this is 0, meaning
that the contents start at the beginning of the entry. This can be
offset the entry contents a little. Defaults to 0.
pad-after:
Padding after the contents of the entry. Normally this is 0, meaning
that the entry ends at the last byte of content (unless adjusted by
other properties). This allows room to be created in the image for
this entry to expand later. Defaults to 0.
align-size:
This sets the alignment of the entry size. For example, to ensure
that the size of an entry is a multiple of 64 bytes, set this to 64.
If 'align-size' is not provided, no alignment is performed.
align-end:
This sets the alignment of the end of an entry. Some entries require
that they end on an alignment boundary, regardless of where they
start. This does not move the start of the entry, so the contents of
the entry will still start at the beginning. But there may be padding
at the end. If 'align-end' is not provided, no alignment is performed.
filename:
For 'blob' types this provides the filename containing the binary to
put into the entry. If binman knows about the entry type (like
u-boot-bin), then there is no need to specify this.
type:
Sets the type of an entry. This defaults to the entry name, but it is
possible to use any name, and then add (for example) 'type = "u-boot"'
to specify the type.
offset-unset:
Indicates that the offset of this entry should not be set by placing
it immediately after the entry before. Instead, is set by another
entry which knows where this entry should go. When this boolean
property is present, binman will give an error if another entry does
not set the offset (with the GetOffsets() method).
image-pos:
This cannot be set on entry (or at least it is ignored if it is), but
with the -u option, binman will set it to the absolute image position
for each entry. This makes it easy to find out exactly where the entry
ended up in the image, regardless of parent sections, etc.
The attributes supported for images are described below. Several are similar
to those for entries.
size:
Sets the image size in bytes, for example 'size = <0x100000>' for a
1MB image.
align-size:
This sets the alignment of the image size. For example, to ensure
that the image ends on a 512-byte boundary, use 'align-size = <512>'.
If 'align-size' is not provided, no alignment is performed.
pad-before:
This sets the padding before the image entries. The first entry will
be positioned after the padding. This defaults to 0.
pad-after:
This sets the padding after the image entries. The padding will be
placed after the last entry. This defaults to 0.
pad-byte:
This specifies the pad byte to use when padding in the image. It
defaults to 0. To use 0xff, you would add 'pad-byte = <0xff>'.
filename:
This specifies the image filename. It defaults to 'image.bin'.
sort-by-offset:
This causes binman to reorder the entries as needed to make sure they
are in increasing positional order. This can be used when your entry
order may not match the positional order. A common situation is where
the 'offset' properties are set by CONFIG options, so their ordering is
not known a priori.
This is a boolean property so needs no value. To enable it, add a
line 'sort-by-offset;' to your description.
multiple-images:
Normally only a single image is generated. To create more than one
image, put this property in the binman node. For example, this will
create image1.bin containing u-boot.bin, and image2.bin containing
both spl/u-boot-spl.bin and u-boot.bin:
binman {
multiple-images;
image1 {
u-boot {
};
};
image2 {
spl {
};
u-boot {
};
};
};
end-at-4gb:
For x86 machines the ROM offsets start just before 4GB and extend
up so that the image finished at the 4GB boundary. This boolean
option can be enabled to support this. The image size must be
provided so that binman knows when the image should start. For an
8MB ROM, the offset of the first entry would be 0xfff80000 with
this option, instead of 0 without this option.
Examples of the above options can be found in the tests. See the
tools/binman/test directory.
It is possible to have the same binary appear multiple times in the image,
either by using a unit number suffix (u-boot@0, u-boot@1) or by using a
different name for each and specifying the type with the 'type' attribute.
Sections and hiearchical images
-------------------------------
Sometimes it is convenient to split an image into several pieces, each of which
contains its own set of binaries. An example is a flash device where part of
the image is read-only and part is read-write. We can set up sections for each
of these, and place binaries in them independently. The image is still produced
as a single output file.
This feature provides a way of creating hierarchical images. For example here
is an example image with two copies of U-Boot. One is read-only (ro), intended
to be written only in the factory. Another is read-write (rw), so that it can be
upgraded in the field. The sizes are fixed so that the ro/rw boundary is known
and can be programmed:
binman {
section@0 {
read-only;
name-prefix = "ro-";
size = <0x100000>;
u-boot {
};
};
section@1 {
name-prefix = "rw-";
size = <0x100000>;
u-boot {
};
};
};
This image could be placed into a SPI flash chip, with the protection boundary
set at 1MB.
A few special properties are provided for sections:
read-only:
Indicates that this section is read-only. This has no impact on binman's
operation, but his property can be read at run time.
name-prefix:
This string is prepended to all the names of the binaries in the
section. In the example above, the 'u-boot' binaries which actually be
renamed to 'ro-u-boot' and 'rw-u-boot'. This can be useful to
distinguish binaries with otherwise identical names.
Special properties
------------------
Some entries support special properties, documented here:
u-boot-with-ucode-ptr:
optional-ucode: boolean property to make microcode optional. If the
u-boot.bin image does not include microcode, no error will
be generated.
Order of image creation
-----------------------
Image creation proceeds in the following order, for each entry in the image.
1. AddMissingProperties() - binman can add calculated values to the device
tree as part of its processing, for example the offset and size of each
entry. This method adds any properties associated with this, expanding the
device tree as needed. These properties can have placeholder values which are
set later by SetCalculatedProperties(). By that stage the size of sections
cannot be changed (since it would cause the images to need to be repacked),
but the correct values can be inserted.
2. ProcessFdt() - process the device tree information as required by the
particular entry. This may involve adding or deleting properties. If the
processing is complete, this method should return True. If the processing
cannot complete because it needs the ProcessFdt() method of another entry to
run first, this method should return False, in which case it will be called
again later.
3. GetEntryContents() - the contents of each entry are obtained, normally by
reading from a file. This calls the Entry.ObtainContents() to read the
contents. The default version of Entry.ObtainContents() calls
Entry.GetDefaultFilename() and then reads that file. So a common mechanism
to select a file to read is to override that function in the subclass. The
functions must return True when they have read the contents. Binman will
retry calling the functions a few times if False is returned, allowing
dependencies between the contents of different entries.
4. GetEntryOffsets() - calls Entry.GetOffsets() for each entry. This can
return a dict containing entries that need updating. The key should be the
entry name and the value is a tuple (offset, size). This allows an entry to
provide the offset and size for other entries. The default implementation
of GetEntryOffsets() returns {}.
5. PackEntries() - calls Entry.Pack() which figures out the offset and
size of an entry. The 'current' image offset is passed in, and the function
returns the offset immediately after the entry being packed. The default
implementation of Pack() is usually sufficient.
6. CheckSize() - checks that the contents of all the entries fits within
the image size. If the image does not have a defined size, the size is set
large enough to hold all the entries.
7. CheckEntries() - checks that the entries do not overlap, nor extend
outside the image.
8. SetCalculatedProperties() - update any calculated properties in the device
tree. This sets the correct 'offset' and 'size' vaues, for example.
9. ProcessEntryContents() - this calls Entry.ProcessContents() on each entry.
The default implementatoin does nothing. This can be overriden to adjust the
contents of an entry in some way. For example, it would be possible to create
an entry containing a hash of the contents of some other entries. At this
stage the offset and size of entries should not be adjusted.
10. WriteSymbols() - write the value of symbols into the U-Boot SPL binary.
See 'Access to binman entry offsets at run time' below for a description of
what happens in this stage.
11. BuildImage() - builds the image and writes it to a file. This is the final
step.
Automatic .dtsi inclusion
-------------------------
It is sometimes inconvenient to add a 'binman' node to the .dts file for each
board. This can be done by using #include to bring in a common file. Another
approach supported by the U-Boot build system is to automatically include
a common header. You can then put the binman node (and anything else that is
specific to U-Boot, such as u-boot,dm-pre-reloc properies) in that header
file.
Binman will search for the following files in arch/<arch>/dts:
<dts>-u-boot.dtsi where <dts> is the base name of the .dts file
<CONFIG_SYS_SOC>-u-boot.dtsi
<CONFIG_SYS_CPU>-u-boot.dtsi
<CONFIG_SYS_VENDOR>-u-boot.dtsi
u-boot.dtsi
U-Boot will only use the first one that it finds. If you need to include a
more general file you can do that from the more specific file using #include.
If you are having trouble figuring out what is going on, you can uncomment
the 'warning' line in scripts/Makefile.lib to see what it has found:
# Uncomment for debugging
# This shows all the files that were considered and the one that we chose.
# u_boot_dtsi_options_debug = $(u_boot_dtsi_options_raw)
Access to binman entry offsets at run time (symbols)
----------------------------------------------------
Binman assembles images and determines where each entry is placed in the image.
This information may be useful to U-Boot at run time. For example, in SPL it
is useful to be able to find the location of U-Boot so that it can be executed
when SPL is finished.
Binman allows you to declare symbols in the SPL image which are filled in
with their correct values during the build. For example:
binman_sym_declare(ulong, u_boot_any, offset);
declares a ulong value which will be assigned to the offset of any U-Boot
image (u-boot.bin, u-boot.img, u-boot-nodtb.bin) that is present in the image.
You can access this value with something like:
ulong u_boot_offset = binman_sym(ulong, u_boot_any, offset);
Thus u_boot_offset will be set to the offset of U-Boot in memory, assuming that
the whole image has been loaded, or is available in flash. You can then jump to
that address to start U-Boot.
At present this feature is only supported in SPL. In principle it is possible
to fill in such symbols in U-Boot proper, as well.
Access to binman entry offsets at run time (fdt)
------------------------------------------------
Binman can update the U-Boot FDT to include the final position and size of
each entry in the images it processes. The option to enable this is -u and it
causes binman to make sure that the 'offset', 'image-pos' and 'size' properties
are set correctly for every entry. Since it is not necessary to specify these in
the image definition, binman calculates the final values and writes these to
the device tree. These can be used by U-Boot at run-time to find the location
of each entry.
Map files
---------
The -m option causes binman to output a .map file for each image that it
generates. This shows the offset and size of each entry. For example:
Offset Size Name
00000000 00000028 main-section
00000000 00000010 section@0
00000000 00000004 u-boot
00000010 00000010 section@1
00000000 00000004 u-boot
This shows a hierarchical image with two sections, each with a single entry. The
offsets of the sections are absolute hex byte offsets within the image. The
offsets of the entries are relative to their respective sections. The size of
each entry is also shown, in bytes (hex). The indentation shows the entries
nested inside their sections.
Passing command-line arguments to entries
-----------------------------------------
Sometimes it is useful to pass binman the value of an entry property from the
command line. For example some entries need access to files and it is not
always convenient to put these filenames in the image definition (device tree).
The-a option supports this:
-a<prop>=<value>
where
<prop> is the property to set
<value> is the value to set it to
Not all properties can be provided this way. Only some entries support it,
typically for filenames.
Code coverage
-------------
Binman is a critical tool and is designed to be very testable. Entry
implementations target 100% test coverage. Run 'binman -T' to check this.
To enable Python test coverage on Debian-type distributions (e.g. Ubuntu):
$ sudo apt-get install python-coverage python-pytest
Advanced Features / Technical docs
----------------------------------
The behaviour of entries is defined by the Entry class. All other entries are
a subclass of this. An important subclass is Entry_blob which takes binary
data from a file and places it in the entry. In fact most entry types are
subclasses of Entry_blob.
Each entry type is a separate file in the tools/binman/etype directory. Each
file contains a class called Entry_<type> where <type> is the entry type.
New entry types can be supported by adding new files in that directory.
These will automatically be detected by binman when needed.
Entry properties are documented in entry.py. The entry subclasses are free
to change the values of properties to support special behaviour. For example,
when Entry_blob loads a file, it sets content_size to the size of the file.
Entry classes can adjust other entries. For example, an entry that knows
where other entries should be positioned can set up those entries' offsets
so they don't need to be set in the binman decription. It can also adjust
entry contents.
Most of the time such essoteric behaviour is not needed, but it can be
essential for complex images.
If you need to specify a particular device-tree compiler to use, you can define
the DTC environment variable. This can be useful when the system dtc is too
old.
History / Credits
-----------------
Binman takes a lot of inspiration from a Chrome OS tool called
'cros_bundle_firmware', which I wrote some years ago. That tool was based on
a reasonably simple and sound design but has expanded greatly over the
years. In particular its handling of x86 images is convoluted.
Quite a few lessons have been learned which are hopefully applied here.
Design notes
------------
On the face of it, a tool to create firmware images should be fairly simple:
just find all the input binaries and place them at the right place in the
image. The difficulty comes from the wide variety of input types (simple
flat binaries containing code, packaged data with various headers), packing
requirments (alignment, spacing, device boundaries) and other required
features such as hierarchical images.
The design challenge is to make it easy to create simple images, while
allowing the more complex cases to be supported. For example, for most
images we don't much care exactly where each binary ends up, so we should
not have to specify that unnecessarily.
New entry types should aim to provide simple usage where possible. If new
core features are needed, they can be added in the Entry base class.
To do
-----
Some ideas:
- Use of-platdata to make the information available to code that is unable
to use device tree (such as a very small SPL image)
- Allow easy building of images by specifying just the board name
- Produce a full Python binding for libfdt (for upstream). This is nearing
completion but some work remains
- Add an option to decode an image into the constituent binaries
- Support building an image for a board (-b) more completely, with a
configurable build directory
- Consider making binman work with buildman, although if it is used in the
Makefile, this will be automatic
--
Simon Glass <sjg@chromium.org>
7/7/2016
|